Publication detail
Homogenization of scalar wave equations with hysteresis
FRANCŮ, J. KREJČÍ, P.
Czech title
Homogenizace skalární vlnové rovnice s hysterezí
English title
Homogenization of scalar wave equations with hysteresis
Type
journal article - other
Language
en
Original abstract
The paper deals with a scalar wave equation of the form $\rho u_{tt} = (F[u_x])_x + f$ where $F$ is a Prandtl-Ishlinskii operator and $\rho, f$ are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density $\rho$ and the Prandtl-Ishlinskii distribution function $\eta$ are allowed to depend on the space variable $x$. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data $\rho^\eps$ and $\eta^\eps$, where the spatial period $\eps$ tends to $0$. We identify the homogenized limits $\rho^*$ and $\eta^*$ and prove the convergence of solutions $u^\e$ to the solution $u^*$ of the homogenized equation.
Czech abstract
Článek se zabývá skalární vlnovou rovnicí $\rho u_{tt} = (F[u_x])_x + f$, kde $F$ je Prandtlův-Ishlinského operátor a $\rho, f$ jsou dané funkce. Tato rovnice popisuje podélné vibrace elastoplastické tyče. Hustota $\rho$ a distribuční funkce $\eta$ Prandtlova-Ishlinského operátoru mohou záviset na prostorové proměnné $x$. V článku je dokázána existence, jednoznačnost a hladkost řešení odpovídající počáteční okrajové úlohy. Při homogenizaci uvažujeme posloupnost rovnic zmíněného typu s prostorově periodickými koeficienty $\rho^\eps$ and $\eta^\eps$, přičemž prostorová perioda $\eps$ jde k nule. V práci jsou identifikovány homogenizované limity $\rho^*$ and $\eta^*$ a dokázána konvergence řešní $u^\e$ k řešení $u^*$ homogenizované rovnice.
English abstract
The paper deals with a scalar wave equation of the form $\rho u_{tt} = (F[u_x])_x + f$ where $F$ is a Prandtl-Ishlinskii operator and $\rho, f$ are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density $\rho$ and the Prandtl-Ishlinskii distribution function $\eta$ are allowed to depend on the space variable $x$. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data $\rho^\eps$ and $\eta^\eps$, where the spatial period $\eps$ tends to $0$. We identify the homogenized limits $\rho^*$ and $\eta^*$ and prove the convergence of solutions $u^\e$ to the solution $u^*$ of the homogenized equation.
Keywords in Czech
skalární vlnová rovnice, homogenizace, hysterézní operátor
Keywords in English
scalar wave equation, homogenization, hysteresis operator
RIV year
1999
Released
01.01.1999
ISSN
0935-1175
Volume
11
Number
6
Pages from–to
371–390
Pages count
21
BIBTEX
@article{BUT37538,
author="Jan {Franců} and Pavel {Krejčí},
title="Homogenization of scalar wave equations with hysteresis",
year="1999",
volume="11",
number="6",
month="January",
pages="371--390",
issn="0935-1175"
}