Detail publikace

Homogenizace skalární vlnové rovnice s hysterezí

FRANCŮ, J. KREJČÍ, P.

Český název

Homogenizace skalární vlnové rovnice s hysterezí

Anglický název

Homogenization of scalar wave equations with hysteresis

Typ

článek v časopise - ostatní, Jost

Jazyk

en

Originální abstrakt

The paper deals with a scalar wave equation of the form $\rho u_{tt} = (F[u_x])_x + f$ where $F$ is a Prandtl-Ishlinskii operator and $\rho, f$ are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density $\rho$ and the Prandtl-Ishlinskii distribution function $\eta$ are allowed to depend on the space variable $x$. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data $\rho^\eps$ and $\eta^\eps$, where the spatial period $\eps$ tends to $0$. We identify the homogenized limits $\rho^*$ and $\eta^*$ and prove the convergence of solutions $u^\e$ to the solution $u^*$ of the homogenized equation.

Český abstrakt

Článek se zabývá skalární vlnovou rovnicí $\rho u_{tt} = (F[u_x])_x + f$, kde $F$ je Prandtlův-Ishlinského operátor a $\rho, f$ jsou dané funkce. Tato rovnice popisuje podélné vibrace elastoplastické tyče. Hustota $\rho$ a distribuční funkce $\eta$ Prandtlova-Ishlinského operátoru mohou záviset na prostorové proměnné $x$. V článku je dokázána existence, jednoznačnost a hladkost řešení odpovídající počáteční okrajové úlohy. Při homogenizaci uvažujeme posloupnost rovnic zmíněného typu s prostorově periodickými koeficienty $\rho^\eps$ and $\eta^\eps$, přičemž prostorová perioda $\eps$ jde k nule. V práci jsou identifikovány homogenizované limity $\rho^*$ and $\eta^*$ a dokázána konvergence řešní $u^\e$ k řešení $u^*$ homogenizované rovnice.

Anglický abstrakt

The paper deals with a scalar wave equation of the form $\rho u_{tt} = (F[u_x])_x + f$ where $F$ is a Prandtl-Ishlinskii operator and $\rho, f$ are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density $\rho$ and the Prandtl-Ishlinskii distribution function $\eta$ are allowed to depend on the space variable $x$. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data $\rho^\eps$ and $\eta^\eps$, where the spatial period $\eps$ tends to $0$. We identify the homogenized limits $\rho^*$ and $\eta^*$ and prove the convergence of solutions $u^\e$ to the solution $u^*$ of the homogenized equation.

Klíčová slova česky

skalární vlnová rovnice, homogenizace, hysterézní operátor

Klíčová slova anglicky

scalar wave equation, homogenization, hysteresis operator

Rok RIV

1999

Vydáno

01.01.1999

ISSN

0935-1175

Ročník

11

Číslo

6

Strany od–do

371–390

Počet stran

21

BIBTEX


@article{BUT37538,
  author="Jan {Franců} and Pavel {Krejčí},
  title="Homogenization of scalar wave equations with hysteresis",
  year="1999",
  volume="11",
  number="6",
  month="January",
  pages="371--390",
  issn="0935-1175"
}