Publication detail
THE USE OF NEURAL NETWORK FOR DIAGNOSTICS REMANENT LIFETIME OF INSULATING MATERIAL
HAMMER, M. LATINA, P. ŘÍHA, Z.
Czech title
POUŽITÍ NEURONOVÁ SÍTĚ PRO DIAGNOSTIKU ZBYTKOVÉ DOBY ŽIVOTNOSTI IZOLANTU
English title
THE USE OF NEURAL NETWORK FOR DIAGNOSTICS REMANENT LIFETIME OF INSULATING MATERIAL
Type
conference paper
Language
en
Original abstract
The paper deals with the usage of artificial intelligence (neural networks) for description the lifetime of insulating material of electric rotary machine. A state of insulating material is the main part of reliability of whole system. Up to now, we worked with data obtained by non-destructive method in laboratory condition on insulating sample. At this time, we are trying to apply the data, which were measured by non-destructive method too. The data were measured on real electric motor and they will be used for inputs of the neural network. The neural network then can predict the remanent lifetime of investigate system
Czech abstract
Příspěvek se zabývá využitím umělé inteligence pro popis životnosti izolačního materiálu elektrického točivého stroje. Stav konkrétního izolačního materiálu je jistě důležitou částí správné funkce celého sledovaného objektu, tj. elektrického točivého stroje. Náš ústav se již několik let zabývá použitím neuronových sítí k popisu kondice izolačního materiálu. Doposud jsme stav izolačního materiálu řešili s daty získanými měřením na vzorku izolačního materiálu nedestruktivní metodou. Nyní se náš výzkum zabývá problémem, zda budou neuronové sítě vhodným a efektivním nástrojem pro diagnostiku i s daty naměřenými na reálném stroji.
English abstract
The paper deals with the usage of artificial intelligence (neural networks) for description the lifetime of insulating material of electric rotary machine. A state of insulating material is the main part of reliability of whole system. Up to now, we worked with data obtained by non-destructive method in laboratory condition on insulating sample. At this time, we are trying to apply the data, which were measured by non-destructive method too. The data were measured on real electric motor and they will be used for inputs of the neural network. The neural network then can predict the remanent lifetime of investigate system
Keywords in Czech
Neuronová síť; Diagnostika; Umělá Intelligence
Keywords in English
Neural Network; Diagnostic; Artificial Intelligence
RIV year
2005
Released
09.06.2005
Location
Sibiu, Romania
ISBN
973-718-259-6
Book
UBR-CORR Study and Control of Corroslon in the Perspective of Sustalnable Development of Urban Distribution Grids
Pages from–to
163–165
Pages count
3
BIBTEX
@inproceedings{BUT18414,
author="Miloš {Hammer} and Petr {Latina} and Zbyněk {Říha},
title="THE USE OF NEURAL NETWORK FOR DIAGNOSTICS REMANENT LIFETIME OF INSULATING MATERIAL",
booktitle="UBR-CORR Study and Control of Corroslon in the Perspective of Sustalnable Development of Urban Distribution Grids",
year="2005",
month="June",
pages="163--165",
address="Sibiu, Romania",
isbn="973-718-259-6"
}