Publication detail

Trident Snake Control Based on Conformal Geometric Algebra

NÁVRAT, A. MATOUŠEK, R.

Czech title

Řízení trident robota pomocí konformní geometrické algebry

English title

Trident Snake Control Based on Conformal Geometric Algebra

Type

conference paper

Language

en

Original abstract

Local controllability of a trident snake robot is solved by means of 5D conformal geometric algebra. The non–holonomic kinematic equations are assembled, their property to be a Pfaff system is discussed and the solution is found. The functionality is demonstrated on a virtual model in CLUCalc programme.

Czech abstract

Lokální řiditelnost trident robota je řešena pomocí 5D konformní geometrické algebry. Jsou sestaveny neholonomní kinematické rovnice, diskutují se jejich vlastnosti a je nalezeno řešení. Funkčnost je domonstrována vizualizací v programu CLUCalc.

English abstract

Local controllability of a trident snake robot is solved by means of 5D conformal geometric algebra. The non–holonomic kinematic equations are assembled, their property to be a Pfaff system is discussed and the solution is found. The functionality is demonstrated on a virtual model in CLUCalc programme.

Keywords in English

Conformal geometric algebra; Clifford algebra; Mathematics robotic; Nonholonomic mechanics; Snake robots; Local controllability; Bionics

RIV year

2015

Released

07.06.2015

Publisher

Springer International Publishing

Location

Switzerland

ISBN

978-3-319-19824-8

ISSN

2194-5357

Book

Mendel 2015: Recent Advances in Soft Computing

Volume

2015

Number

378

Pages from–to

375–385

Pages count

11

BIBTEX


@inproceedings{BUT121724,
  author="Aleš {Návrat} and Radomil {Matoušek},
  title="Trident Snake Control Based on Conformal Geometric Algebra",
  booktitle="Mendel 2015: Recent Advances in Soft Computing",
  year="2015",
  volume="2015",
  number="378",
  month="June",
  pages="375--385",
  publisher="Springer International Publishing",
  address="Switzerland",
  isbn="978-3-319-19824-8",
  issn="2194-5357"
}