Course detail

Machine and Process Control

FSI-ZAE Acad. year: 2025/2026 Summer semester

The course introduces students to the ways of controlling the various machines and processes. Students will gain practical experience with control systems based on Arduino development boards and PLC from B&R Company. Students will program the control in open and closed loop for various dynamic systems. The course also includes an introduction to photovoltaic power plant technology and their control.

Learning outcomes of the course unit

Prerequisites

Planned learning activities and teaching methods

Assesment methods and criteria linked to learning outcomes

Language of instruction

Czech

Aims

Specification of controlled education, way of implementation and compensation for absences

The study programmes with the given course

Programme N-KSI-P: Mechanical Engineering Design, Master's
branch ---: no specialisation, 5 credits, compulsory

Type of course unit

 

Lecture

16 hours, optionally

Syllabus

- Automation systems (reasons for use, demands and safety).
- Structure of automation system (instrumentation subsytem, GUI, control subsystem).
- Basic strategy of control (open and closed loop control, application of PID controller)
- Division and abilities of individual types of automation systems (SCADA, microcontrollers, functions of OS)
- Interface of control systems (inputs/outputs, communication buses)
- Industrial drives (division, ways of control, control efficiency, suitability according to the target application)


- Photovoltaic Power Plants – Principle and Control Methods with regard to Maximum Efficiency

Laboratory exercise

32 hours, compulsory

Syllabus

Arduino block:
- Control of digital and analog inputs/outputs.
- Data sending over communication bus.
- Control of alfanumeric LCD.
- Control of servomotors.
- Obtaining measured values from sensors (ultrasound, accelerometer, position sensor).
- Open-loop control.
- Closed/loop control (stabiliser, autonomous vehicle).
PLC block:
- Starting the project, introduction to development environment.
- LAN connection, identification and definition of HW.
- Programming of simple automation tasksin Structured Text programming language.
- Visualization.
- Control of master-slave servodrives.
- Team work on one complex automation task.