Publication detail

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

LEGRAND, N. LABBE, N. WEISZ-PATRAULT, D. EHRLACHER, A. LUKS, T. HORSKÝ, J.

Czech title

Analýza přenosu tepla ve válcovací mezeře pomocí senzorů na valci a modelů přenosu tepla při válcování ocelových pásů za tepla

English title

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

Type

journal article in Web of Science

Language

en

Original abstract

This paper presents an analysis of roll bite heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot sensors) implemented near roll surface are used with heat transfer models to identify interfacial heat flux, roll surface temperature and Heat Transfer Coefficient HTCroll-bite in the roll bite. It is shown that: – the slot type sensor is more efficient than the drilled type sensor to capture correctly fast roll temperature changes and heat fluxes in the bite during hot rolling but its life's duration is shorter. – average HTCroll-bite is within the range 15-26 kW/m^2/K: the higher the strip reduction (e.g. contact pressure) is, the higher the HTCroll-bite is. – scale thickness at strip surface tends to decrease heat transfers in the bite from strip to roll. – HTCroll-bite is not uniform along the roll-strip contact but seems proportional to contact pressure. – this non uniform HTCroll-bite along the contact could contribute to decrease thermal shock (so roll thermal fatigue) when the work roll enters the roll bite, in comparison to a uniform HTCroll-bite. – Heat transfer in the roll bite is mainly controlled by heat conduction due to the huge roll-strip temperature difference, while heat dissipated by friction at roll-strip interface seems negligible on these heat transfers.

Czech abstract

Tento článek prezentuje analýzu přenosu tepla válcovací mezery během pilotního válcování. Pro stanovení mezi povrchový tepelný tok, teplotu válce a součinitel přestupu tepla ve válcovací mezeře byly použity 2 typy senzorů (vrtaný a s drážkou), které se nacházely v bezprostřední blízkosti povrchu válce. Je ukázáno, že senzor s drážkou je více efektivní než vrtaný při zachycení rychlých změn teploty válce a tepelného toku ve válcovací mezeře během válcování. Životnost je však menší. Průměrný součinitel přestupu tepla válcovací mezery je v rozmezí 15 – 26 kW/m^2/K. Čím vyšší úběr tím vyšší kontaktní tlak a tím vyšší součinitel přestupu tepla. Tloušťka okují na povrchu válcovaného materiálu má tendence snižovat přenos tepla mezi válcem a materiálem ve válcovací mezeře. Součinitel přestupu tepla válcovací mezery není uniformní podél kontaktu mezi válcem a válcovaným pásem, ale zdá se býti proporcionální ke kontaktnímu tlaku. Tento nehomogenní součinitel přestupu tepla podél kontaktu může přispět ke snížení tepelného šoku (čili k tepelné únavě materiálu) v okamžiku kdy pracovní válce vstupuje do válcovací mezery, na rozdíl od homogenního součinitele přestupu tepla. Přenos tepla ve válcovací mezeře je převážně určován vedením tepla díky velkým tepelným rozdílům, zatímco teplo vytvořené třením v kontaktu mezi válcem a válcovaným materiálem se zdá být zanedbatelným.

English abstract

This paper presents an analysis of roll bite heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot sensors) implemented near roll surface are used with heat transfer models to identify interfacial heat flux, roll surface temperature and Heat Transfer Coefficient HTCroll-bite in the roll bite. It is shown that: – the slot type sensor is more efficient than the drilled type sensor to capture correctly fast roll temperature changes and heat fluxes in the bite during hot rolling but its life's duration is shorter. – average HTCroll-bite is within the range 15-26 kW/m^2/K: the higher the strip reduction (e.g. contact pressure) is, the higher the HTCroll-bite is. – scale thickness at strip surface tends to decrease heat transfers in the bite from strip to roll. – HTCroll-bite is not uniform along the roll-strip contact but seems proportional to contact pressure. – this non uniform HTCroll-bite along the contact could contribute to decrease thermal shock (so roll thermal fatigue) when the work roll enters the roll bite, in comparison to a uniform HTCroll-bite. – Heat transfer in the roll bite is mainly controlled by heat conduction due to the huge roll-strip temperature difference, while heat dissipated by friction at roll-strip interface seems negligible on these heat transfers.

Keywords in Czech

válcování pásů za tepla, přenost tepla ve válcovací mezeře, inverzní teplotní úloha, tepelná únava

Keywords in English

hot strip rolling, roll bite heat transfer, inverse thermal analysis

RIV year

2012

Released

03.02.2012

Publisher

Trans Tech Publications

Location

Switzerland

ISSN

1013-9826

Volume

504-506

Number

2

Pages from–to

1043–1048

Pages count

6

BIBTEX


@article{BUT90510,
  author="Nicolas {Legrand} and Nathalie {Labbe} and Daniel {Weisz-Patrault} and Alain {Ehrlacher} and Tomáš {Luks} and Jaroslav {Horský},
  title="Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models",
  year="2012",
  volume="504-506",
  number="2",
  month="February",
  pages="1043--1048",
  publisher="Trans Tech Publications",
  address="Switzerland",
  issn="1013-9826"
}