Publication detail
The cube of the Fermat quotient
SKULA, L. DILCHER, K.
Czech title
Třetí mocnina Fermatova kvocientu
English title
The cube of the Fermat quotient
Type
journal article - other
Language
en
Original abstract
In this paper a certain polynomial congruence modulo a prime greater than 3 is proved, and as a consequence a congruence for the cube of the Fermat quotient to base 2 is presented in terms of simple finite sums.
Czech abstract
V tomto článku je dokázána jistá kongruence modulo prvočíslo, které je větší než 3. Jako důsledek je uvedena kongruence pro třetí mocninu Fermatova kvocientu s bazí 2 ve tvaru jednoduchých konečných součtů.
English abstract
In this paper a certain polynomial congruence modulo a prime greater than 3 is proved, and as a consequence a congruence for the cube of the Fermat quotient to base 2 is presented in terms of simple finite sums.
Keywords in English
Fermat Quotient, sums of reciprocals, antiderivatives
RIV year
2007
Released
06.02.2007
Publisher
Amer.Math.Soc.
Location
New York
Journal
INTEGERS:Electronic Journal of Combinatorial Number Theory
Volume
6
Number
A24
Pages from–to
1–12
Pages count
12
BIBTEX
@article{BUT44837,
author="Ladislav {Skula} and Karl {Dilcher},
title="The cube of the Fermat quotient",
journal="INTEGERS:Electronic Journal of Combinatorial Number Theory",
year="2007",
volume="6",
number="A24",
month="February",
pages="1--12",
publisher="Amer.Math.Soc.",
address="New York"
}