Publication detail
A Categorial Contribution to the Kummer Theory of ideal numbers
SKULA, L.
Czech title
Kategorický příspěvek ke Kummerově teorii ideálních čísel
English title
A Categorial Contribution to the Kummer Theory of ideal numbers
Type
journal article - other
Language
en
Original abstract
The main result of this article is the description of all maximal delta-categories by means of alpha-ultrapseudofilters. A delta category is a subcategory of the category of all semigroups possessing a divisor theory in the sence of Arnold. It is shown that these maximal delta-categories form a set with cardinal number exp exp alef zero.
Czech abstract
Hlavní výsledek článku je popis všech maximálních delta-kategorií pomocí alfa-pseudofiltrů. Delta-kategorie je podkategorie kategorie všech pologrup, které mají teorii divizporů ve smysli Arnolda. Je ukázáno, že množina těchto maximálních delta-kategorií má mohutnost exp exp alef nula.
English abstract
The main result of this article is the description of all maximal delta-categories by means of alpha-ultrapseudofilters. A delta category is a subcategory of the category of all semigroups possessing a divisor theory in the sence of Arnold. It is shown that these maximal delta-categories form a set with cardinal number exp exp alef zero.
Keywords in Czech
Kategorie pologrup s teorií divizorů; pseudifiltr; delta-kategorie; v-ideál pologrupy.
Keywords in English
Category of semigroups with divisor theory; pseudofilter; delta-category; v-ideal of a semigroup.
Released
17.04.2003
Publisher
Slovak Academy of Sciences
Location
Bratislava
Journal
Math. Slovaca
Volume
53
Number
3
Pages from–to
255–271
Pages count
17
BIBTEX
@article{BUT43160,
author="Ladislav {Skula},
title="A Categorial Contribution to the Kummer Theory of ideal numbers",
journal="Math. Slovaca",
year="2003",
volume="53",
number="3",
month="April",
pages="255--271",
publisher="Slovak Academy of Sciences",
address="Bratislava"
}