Publication detail
Homogenization of heat equation with hysteresis
FRANCŮ, J.
Czech title
Homogenizace rovnice vedení tepla s hysterezí
English title
Homogenization of heat equation with hysteresis
Type
journal article - other
Language
en
Original abstract
The contribution delas with heat equaition in the form (c u+W[u])_t=div(a.grad u)=f, where the functional operator W[u] is Prandtl-Ishlinskii hysteresis operator of play type characterized by a distribution function eta. The spatially dependent initial boundary value problem is studied. Proof of existence and uniqueness of the solution is omitted since the proof is a slightly modified proof by Brokate-Sprekels. The homogenization problem for this equation si studied. For eps->0, a sequence of problems of the above type with spatially eps-periodic coefficients c^eps, eta,^eps, a^eps si considered. The coefficients c^star,eta^star and a^star in the homogenized problem are identified and convergence of the corresponding solutions u^eps to u^star is proved.
Czech abstract
Příspěvek se zabývá rovnicí vedení tepla ve tvaru (c u+W[u])_t=div(a.grad u)=f, kde functionální operátor W[u] je Prandtlův-Ishlinského hysterézní operátor typu play charakterizováný distribuční functí eta. Je studována prostorově závislá počáteční okrajová úloha. Důkaz existence a jednoznačnosti řešení je vynechán, protože důkaz je lehkou modifikací důkazu Brokate a Sprekelse. Je řešena úloha homogenizace této rovnice. Pro eps->0, uvažujeme posloupnost úloh uvedeného tvaru s prostorově eps-periodickými koeficienty c^eps, eta^eps, a^eps. Koefficienty c^star,eta^star a a^star v homogenizované úloze jsou identifikovány a konvergence příslušných řešení u^eps k u^star je dokázána.
English abstract
The contribution delas with heat equaition in the form (c u+W[u])_t=div(a.grad u)=f, where the functional operator W[u] is Prandtl-Ishlinskii hysteresis operator of play type characterized by a distribution function eta. The spatially dependent initial boundary value problem is studied. Proof of existence and uniqueness of the solution is omitted since the proof is a slightly modified proof by Brokate-Sprekels. The homogenization problem for this equation si studied. For eps->0, a sequence of problems of the above type with spatially eps-periodic coefficients c^eps, eta,^eps, a^eps si considered. The coefficients c^star,eta^star and a^star in the homogenized problem are identified and convergence of the corresponding solutions u^eps to u^star is proved.
Keywords in Czech
Prandtlův-Ishlinského operátor, homogenizace, rovnice vedení tepla
Keywords in English
Prandtl-Ishlinskii operaor, Homogenization, Heat equation
RIV year
2004
Released
01.01.2003
ISSN
0378-4754
Journal
Mathematics and Computers in Simulation
Volume
61
Number
3-5
Pages count
7
BIBTEX
@article{BUT42039,
author="Jan {Franců},
title="Homogenization of heat equation with hysteresis",
journal="Mathematics and Computers in Simulation",
year="2003",
volume="61",
number="3-5",
month="January",
issn="0378-4754"
}