Publication detail
A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation
MICHALEC, M. ONDRA, M. SVOBODA, M. CHMELÍK, J. ZEMAN, P. SVOBODA, P. JACKSON, R.
English title
A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation
Type
journal article in Web of Science
Language
en
Original abstract
The design of a hydrostatic bearing pad is limited to simple geometry using analytical equations or one-parameter optimization based on experimental data. This study proposes and investigates a new two-parameter method for estimating optimal hydrostatic bearing pad proportions—recess area and position, using Computational Fluid Dynamics (CFD). In this study, 3D static CFD quarter model of a multi-recess hydrostatic bearing pad assuming laminar flow is used. The CFD model was calibrated based on experimentally obtained results and the literature. The recess pressure and resulting load are evaluated for a variety of recess positions and areas. Performance factors are calculated and interpolated in the MATLAB environment. Using the proposed novel two-parameter optimization, the energetic loss was reduced by 20% compared to the classical one-parameter approach. This methodology allows versatile and effective design of optimal hydrostatic bearings operating in low-speed conditions to achieve minimum energetic loss.
English abstract
The design of a hydrostatic bearing pad is limited to simple geometry using analytical equations or one-parameter optimization based on experimental data. This study proposes and investigates a new two-parameter method for estimating optimal hydrostatic bearing pad proportions—recess area and position, using Computational Fluid Dynamics (CFD). In this study, 3D static CFD quarter model of a multi-recess hydrostatic bearing pad assuming laminar flow is used. The CFD model was calibrated based on experimentally obtained results and the literature. The recess pressure and resulting load are evaluated for a variety of recess positions and areas. Performance factors are calculated and interpolated in the MATLAB environment. Using the proposed novel two-parameter optimization, the energetic loss was reduced by 20% compared to the classical one-parameter approach. This methodology allows versatile and effective design of optimal hydrostatic bearings operating in low-speed conditions to achieve minimum energetic loss.
Keywords in English
Hydrostatic lubrication, computational uid dynamics, model validation, optimization, methodology
Released
06.04.2023
Publisher
Springer
ISSN
1023-8883
Volume
71
Number
2
Pages count
14
BIBTEX
@article{BUT183194,
author="Michal {Michalec} and Martin {Ondra} and Martin {Svoboda} and Jiří {Chmelík} and Jiří {Chmelík} and Petr {Zeman} and Petr {Svoboda} and Robert L. {Jackson},
title="A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation",
year="2023",
volume="71",
number="2",
month="April",
publisher="Springer",
issn="1023-8883"
}