Publication detail

Liquid jet dispersion after impact on a highly curved surface

HÁJEK, O. MALÝ, M. JEDELSKÝ, J. VANKESWARAM, S. CEJPEK, O. PRINZ, F. JÍCHA, M.

English title

Liquid jet dispersion after impact on a highly curved surface

Type

journal article in Web of Science

Language

en

Original abstract

A liquid jet impacting on a wire mesh is a phenomenon that occurs in such industrial applications as rotating packed beds or agricultural spraying. To derive a fundamental understanding of the behaviour of a dispersion generated by the whole mesh, a simple geometric case needs to be studied. This paper focuses on the dispersion of a liquid jet impacting on a single stainless steel rod studied with a high-speed visualisation. It is found that two liquid sheets are formed with sheet characteristics described by a dispersion angle & alpha;e, a sheet velocity vs, and a breakup length Lb. Three stages of the angular development of the dispersion are observed based on the liquid flow rate and the exit orifice diameter. A correlation for the dispersion angle growth is proposed based on the experimental results. Perforated, segmented and wave-assisted sheet breakup regimes are found in the recorded images with their presence dependent on the impact velocity. A correlation for the breakup length is proposed for the sheets based on similarities with flat fan nozzle theory.

English abstract

A liquid jet impacting on a wire mesh is a phenomenon that occurs in such industrial applications as rotating packed beds or agricultural spraying. To derive a fundamental understanding of the behaviour of a dispersion generated by the whole mesh, a simple geometric case needs to be studied. This paper focuses on the dispersion of a liquid jet impacting on a single stainless steel rod studied with a high-speed visualisation. It is found that two liquid sheets are formed with sheet characteristics described by a dispersion angle & alpha;e, a sheet velocity vs, and a breakup length Lb. Three stages of the angular development of the dispersion are observed based on the liquid flow rate and the exit orifice diameter. A correlation for the dispersion angle growth is proposed based on the experimental results. Perforated, segmented and wave-assisted sheet breakup regimes are found in the recorded images with their presence dependent on the impact velocity. A correlation for the breakup length is proposed for the sheets based on similarities with flat fan nozzle theory.

Keywords in English

Atomization; Liquid jet; Impact; Liquid sheet; Breakup; Curved surface

Released

24.06.2023

Publisher

ELSEVIER SCIENCE INC

Location

NEW YORK

ISSN

1879-2286

Volume

149

Number

1

Pages count

12

BIBTEX


@article{BUT181553,
  author="Ondřej {Hájek} and Milan {Malý} and Jan {Jedelský} and Sai Krishna {Vankeswaram} and Ondřej {Cejpek} and František {Prinz} and Miroslav {Jícha},
  title="Liquid jet dispersion after impact on a highly curved surface",
  year="2023",
  volume="149",
  number="1",
  month="June",
  publisher="ELSEVIER SCIENCE INC",
  address="NEW YORK",
  issn="1879-2286"
}