Publication detail
Verification and analysis of advanced tuneable nonlinear vibration energy harvester
SOSNA, P. RUBEŠ, O. HADAŠ, Z.
English title
Verification and analysis of advanced tuneable nonlinear vibration energy harvester
Type
journal article in Web of Science
Language
en
Original abstract
This paper deals with advanced techniques of transducing kinetic energy of vibration into useful electricity. Piezoelectricity is widely used as one of the conversion principles and nonlinearities are studied. Motivated by possible applications in aircraft or railways, we seek to find the best system configuration for various forcing conditions to maximize the power generation for more advanced wireless sensing stations. The results for vibration amplitude 0.5 g indicate that monostable regime is suitable for tuning for frequencies lower than the natural frequency of the linear resonator. The best type of oscillation for bistable regime is always in-well single-periodic behavior and is suitable for tuning in the entire frequency range from 20 to 65 Hz. The results show the versatility of this simple energy harvester and could serve as theoretical background for a new tunable energy harvester that will be able to adapt to changes in excitation. This design could also be used in smart sensing structures.
English abstract
This paper deals with advanced techniques of transducing kinetic energy of vibration into useful electricity. Piezoelectricity is widely used as one of the conversion principles and nonlinearities are studied. Motivated by possible applications in aircraft or railways, we seek to find the best system configuration for various forcing conditions to maximize the power generation for more advanced wireless sensing stations. The results for vibration amplitude 0.5 g indicate that monostable regime is suitable for tuning for frequencies lower than the natural frequency of the linear resonator. The best type of oscillation for bistable regime is always in-well single-periodic behavior and is suitable for tuning in the entire frequency range from 20 to 65 Hz. The results show the versatility of this simple energy harvester and could serve as theoretical background for a new tunable energy harvester that will be able to adapt to changes in excitation. This design could also be used in smart sensing structures.
Keywords in English
Energy harvesting Vibrations Nonlinear resonator Bifurcation diagram Piezoelectric Magneto-elastic system Bistable Tuneable structure
Released
15.04.2023
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Location
London
ISSN
0888-3270
Volume
189
Number
110096
Pages count
10
BIBTEX
@article{BUT181443,
author="Petr {Sosna} and Ondřej {Rubeš} and Zdeněk {Hadaš},
title="Verification and analysis of advanced tuneable nonlinear vibration energy harvester",
year="2023",
volume="189",
number="110096",
month="April",
publisher="ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD",
address="London",
issn="0888-3270"
}