Publication detail
On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations.
OPLUŠTIL, Z. LOMTATIDZE, A.
Czech title
O nezáporných řešeních okrajové úlohy pro lineární funkcionální diferenciální rovnice prvního řádu
English title
On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations.
Type
journal article - other
Language
en
Original abstract
In certain sense unimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem u'(t)=l(u)(t)+q(t), u(a)=h(u)+c, where l is a linear bounded operator, h is a linear bounded functional, q is a Lebesgue integrable function and c>0.
Czech abstract
Nalezení ,v jistém smyslu, nezlepšitelnývh podmínek pro existenci a jednoznačnost nezáporného řešení okrajové úlohy u'(t)=l(u)(t)+q(t), u(a)=h(u)+c, kde l je lineární ohraničený operátor, h je lineární ohraničený funkcionál, q je Lebesguevsky integrovatelná funkce a c>0.
English abstract
In certain sense unimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem u'(t)=l(u)(t)+q(t), u(a)=h(u)+c, where l is a linear bounded operator, h is a linear bounded functional, q is a Lebesgue integrable function and c>0.
Keywords in English
Functional differential equation, existnce, uniqueness, boundary value problem
Released
31.08.2004
Publisher
Univ. Szeged
Location
Szeged, Hungary
ISSN
1417-3875
Journal
Electronic Journal of Qualitative Theory of Differential Equations
Volume
2003
Number
16
Pages from–to
1–21
Pages count
21
BIBTEX
@article{BUT18129,
author="Zdeněk {Opluštil} and Aleksandre {Lomtatidze},
title="On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations.",
journal="Electronic Journal of Qualitative Theory of Differential Equations",
year="2004",
volume="2003",
number="16",
month="August",
pages="1--21",
publisher="Univ. Szeged",
address="Szeged, Hungary",
issn="1417-3875"
}