Publication detail
Optimization of Membrane-Based Post-Combustion Carbon Capture Using a Network Flow Model
ZACH, B. ŠYC, M. PLUSKAL, J. ŠOMPLÁK, R. IZÁK, P.
English title
Optimization of Membrane-Based Post-Combustion Carbon Capture Using a Network Flow Model
Type
abstract
Language
en
Original abstract
The reduction of CO2 emissions is a very challenging issue. The capture of CO2 from combustion processes is associated with high energy consumption and decreases the efficiency of power-producing facilities. This can affect the economy and in specific cases, such as waste-to-energy plants, also their classification according to legislation. To allow the minimization of the energy consumption, a model of a membrane-based post-combustion capture was developed. The optimized parameters are the pressures and membrane properties of individual membrane stages. Model stands on the principle of a network flow problem, where all non-linear dependencies are linearized and replaced by a black box to ensure the optimality of results. The functionality of the model was verified on a case study and the results of the optimization are presented in the paper and implications of the energy consumption for a waste-to-energy plant are discussed.
English abstract
The reduction of CO2 emissions is a very challenging issue. The capture of CO2 from combustion processes is associated with high energy consumption and decreases the efficiency of power-producing facilities. This can affect the economy and in specific cases, such as waste-to-energy plants, also their classification according to legislation. To allow the minimization of the energy consumption, a model of a membrane-based post-combustion capture was developed. The optimized parameters are the pressures and membrane properties of individual membrane stages. Model stands on the principle of a network flow problem, where all non-linear dependencies are linearized and replaced by a black box to ensure the optimality of results. The functionality of the model was verified on a case study and the results of the optimization are presented in the paper and implications of the energy consumption for a waste-to-energy plant are discussed.
Keywords in English
Network flow problem; carbon dioxide; flue gas; linearization; scenario-based calculation; membrane separation
Released
10.10.2021
ISSN
1847-7178
Pages from–to
399–399
Pages count
1