Publication detail
Identifying the Coronal Source Regions of Solar Wind Streams from Total Solar Eclipse Observations and in situ Measurements Extending over a Solar Cycle
HABBAL, S. DRUCKMÜLLER, M. NATHALIA, A. DING, A. JOHNSON, J. ŠTARHA, P. HODEROVÁ, J. BOE, B. CONSTANTINIOU, S. ARNDT, M.
English title
Identifying the Coronal Source Regions of Solar Wind Streams from Total Solar Eclipse Observations and in situ Measurements Extending over a Solar Cycle
Type
journal article in Web of Science
Language
en
Original abstract
This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fe xi 789.2 nm (T-fexi = 1.2 0.1 MK), and Fe xiv 530.3 nm (T-fexiv = 1.8 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fe xi emission from Fe10+ and hence a constant electron temperature, T-c = T-fexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300-700 km s(-1) stream speeds, referred to as the continual solar wind. Thus, Fe10+ yields the fiducial link between the continual solar wind and its T-fexi sources at the Sun. While the spatial distribution of Fe xiv emission from Fe13+ associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+ in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures >= T-fexiv within the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the same T-fexi in the expanding corona places new constraints on the physical processes shaping the solar wind.
English abstract
This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fe xi 789.2 nm (T-fexi = 1.2 0.1 MK), and Fe xiv 530.3 nm (T-fexiv = 1.8 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fe xi emission from Fe10+ and hence a constant electron temperature, T-c = T-fexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300-700 km s(-1) stream speeds, referred to as the continual solar wind. Thus, Fe10+ yields the fiducial link between the continual solar wind and its T-fexi sources at the Sun. While the spatial distribution of Fe xiv emission from Fe13+ associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+ in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures >= T-fexiv within the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the same T-fexi in the expanding corona places new constraints on the physical processes shaping the solar wind.
Keywords in English
Solar prominences; Solar cycle; Solar wind; Total eclipses; Solar coronal streamers; Solar magnetic fields; Solar coronal heating; Solar coronal mass ejections; Solar corona
Released
12.04.2021
Publisher
IOP PUBLISHING LTD
Location
BRISTOL
ISSN
2041-8205
Volume
911
Number
1
Pages from–to
1–14
Pages count
14
BIBTEX
@article{BUT171593,
author="Shadia Rifai {Habbal} and Miloslav {Druckmüller} and Alzate {Nathalia} and Adalbert {Ding} and Judd {Johnson} and Pavel {Štarha} and Jana {Hoderová} and Benjamin {Boe} and Sage {Constantiniou} and Martina {Arndt},
title="Identifying the Coronal Source Regions of Solar Wind Streams from Total Solar Eclipse Observations and in situ Measurements Extending over a Solar Cycle",
year="2021",
volume="911",
number="1",
month="April",
pages="1--14",
publisher="IOP PUBLISHING LTD",
address="BRISTOL",
issn="2041-8205"
}