Publication detail

Sierpinski object for affine systems

DENNISTON, J. MELTON, A. RODABAUGH, S. SOLOVJOVS, S.

English title

Sierpinski object for affine systems

Type

journal article in Web of Science

Language

en

Original abstract

Motivated by the concept of Sierpinski object for topological systems of S. Vickers, presented recently by R. Noor and A.K. Srivastava, this paper introduces the Sierpinski object for many-valued topological systems and shows that it has three important properties of the crisp Sierpinski space of general topology. (C) 2016 Elsevier B.V. All rights reserved.

English abstract

Motivated by the concept of Sierpinski object for topological systems of S. Vickers, presented recently by R. Noor and A.K. Srivastava, this paper introduces the Sierpinski object for many-valued topological systems and shows that it has three important properties of the crisp Sierpinski space of general topology. (C) 2016 Elsevier B.V. All rights reserved.

Keywords in English

Affine set; Coreflective subcategory; Free object; Injective object; Quantale; Sierpinski object; Sierpinski topological space; Sober monomorphism; Sober system; Topological system; Variety of algebras

Released

15.04.2017

Publisher

ELSEVIER SCIENCE BV

Location

AMSTERDAM

ISSN

0165-0114

Volume

313

Number

1

Pages from–to

75–92

Pages count

18

BIBTEX


@article{BUT171035,
  author="Jeffery {Denniston} and Austin {Melton} and Stephen {Rodabaugh} and Sergejs {Solovjovs},
  title="Sierpinski object for affine systems",
  year="2017",
  volume="313",
  number="1",
  month="April",
  pages="75--92",
  publisher="ELSEVIER SCIENCE BV",
  address="AMSTERDAM",
  issn="0165-0114"
}