Publication detail
Sierpinski object for affine systems
DENNISTON, J. MELTON, A. RODABAUGH, S. SOLOVJOVS, S.
English title
Sierpinski object for affine systems
Type
journal article in Web of Science
Language
en
Original abstract
Motivated by the concept of Sierpinski object for topological systems of S. Vickers, presented recently by R. Noor and A.K. Srivastava, this paper introduces the Sierpinski object for many-valued topological systems and shows that it has three important properties of the crisp Sierpinski space of general topology. (C) 2016 Elsevier B.V. All rights reserved.
English abstract
Motivated by the concept of Sierpinski object for topological systems of S. Vickers, presented recently by R. Noor and A.K. Srivastava, this paper introduces the Sierpinski object for many-valued topological systems and shows that it has three important properties of the crisp Sierpinski space of general topology. (C) 2016 Elsevier B.V. All rights reserved.
Keywords in English
Affine set; Coreflective subcategory; Free object; Injective object; Quantale; Sierpinski object; Sierpinski topological space; Sober monomorphism; Sober system; Topological system; Variety of algebras
Released
15.04.2017
Publisher
ELSEVIER SCIENCE BV
Location
AMSTERDAM
ISSN
0165-0114
Volume
313
Number
1
Pages from–to
75–92
Pages count
18
BIBTEX
@article{BUT171035,
author="Jeffery {Denniston} and Austin {Melton} and Stephen {Rodabaugh} and Sergejs {Solovjovs},
title="Sierpinski object for affine systems",
year="2017",
volume="313",
number="1",
month="April",
pages="75--92",
publisher="ELSEVIER SCIENCE BV",
address="AMSTERDAM",
issn="0165-0114"
}