Publication detail

On stability of delayed differential systems of arbitrary non-integer order

KISELA, T.

English title

On stability of delayed differential systems of arbitrary non-integer order

Type

journal article in Scopus

Language

en

Original abstract

This paper summarizes and extends known results on qualitative behavior of solutions of autonomous fractional differential systems with a time delay. It utilizes two most common definitions of fractional derivative, Riemann–Liouville and Caputo one, for which optimal stability conditions are formulated via position of eigenvalues in the complex plane. Our approach covers differential systems of any non-integer orders of the derivative. The differences in stability and asymptotic properties of solutions induced by the type of derivative are pointed out as well.

English abstract

This paper summarizes and extends known results on qualitative behavior of solutions of autonomous fractional differential systems with a time delay. It utilizes two most common definitions of fractional derivative, Riemann–Liouville and Caputo one, for which optimal stability conditions are formulated via position of eigenvalues in the complex plane. Our approach covers differential systems of any non-integer orders of the derivative. The differences in stability and asymptotic properties of solutions induced by the type of derivative are pointed out as well.

Keywords in English

fractional delay differential system; stability; asymptotic behavior; Riemann-Liouville derivative; Caputo derivative

Released

30.06.2020

ISSN

1805-3610

Volume

9

Number

1

Pages from–to

31–42

Pages count

12

BIBTEX


@article{BUT169633,
  author="Tomáš {Kisela},
  title="On stability of delayed differential systems of arbitrary non-integer order",
  year="2020",
  volume="9",
  number="1",
  month="June",
  pages="31--42",
  issn="1805-3610"
}