Publication detail
Influence of Hot Pressing Sintering Temperature on the Properties of Low-Density Al0.5NbTa0.8Ti1.5V0.2Zr Refractory High-Entropy Alloy
MORAVČÍKOVÁ DE ALMEIDA GOUVÊA, L. KOVACOVA, Z. KITZMANTEL, M. NEUBAUER, E. JAN, V. DLOUHÝ, I.
English title
Influence of Hot Pressing Sintering Temperature on the Properties of Low-Density Al0.5NbTa0.8Ti1.5V0.2Zr Refractory High-Entropy Alloy
Type
journal article in Scopus
Language
en
Original abstract
In this work, the low-density Al0.5NbTa0.8Ti1.5V0.2Zr RHEA prepared by mechanical alloying combined with hot uniaxial pressing (HP) was investigated. The alloy was subjected to different sintering temperatures on the range of 1200°C up to 1600°C, while keeping a constant densification time. The influence of the increase in sintering temperatures on the RHEAs’ microstructural features, composition and basic mechanical properties was explored by means of x-ray diffraction and scanning electron microscopy, hardness testing, density determination by Archimedes’ principle and elastic moduli by ultrasonic measurements. Full density samples were obtained in all sintering temperatures. The alloy has shown a homogeneous distribution of phases, with presence of dispersed oxides inside the matrix, leading to a fine grain size distribution due to grain-boundary pinning effect, even during the exposure of the alloy at the highest sintering temperature. The mentioned effect is responsible for the achievement of high-hardness in all conditions. Powder metallurgy has been shown to be an advantageous technique for production of alloys for high-temperature applications, as the inherent in-situ formed oxides homogeneously distributed within the matrix may be beneficially used as reinforcement, thus potentially enhancing the mechanical properties of the parts.
English abstract
In this work, the low-density Al0.5NbTa0.8Ti1.5V0.2Zr RHEA prepared by mechanical alloying combined with hot uniaxial pressing (HP) was investigated. The alloy was subjected to different sintering temperatures on the range of 1200°C up to 1600°C, while keeping a constant densification time. The influence of the increase in sintering temperatures on the RHEAs’ microstructural features, composition and basic mechanical properties was explored by means of x-ray diffraction and scanning electron microscopy, hardness testing, density determination by Archimedes’ principle and elastic moduli by ultrasonic measurements. Full density samples were obtained in all sintering temperatures. The alloy has shown a homogeneous distribution of phases, with presence of dispersed oxides inside the matrix, leading to a fine grain size distribution due to grain-boundary pinning effect, even during the exposure of the alloy at the highest sintering temperature. The mentioned effect is responsible for the achievement of high-hardness in all conditions. Powder metallurgy has been shown to be an advantageous technique for production of alloys for high-temperature applications, as the inherent in-situ formed oxides homogeneously distributed within the matrix may be beneficially used as reinforcement, thus potentially enhancing the mechanical properties of the parts.
Keywords in English
complex concentrated alloys; powder metallurgy; intermetallics; microstructure; characterization.
Released
05.01.2021
Publisher
Trans Tech Publications
Location
Switzerland
ISSN
1662-9752
Volume
1016
Number
1016
Pages from–to
940–945
Pages count
6
BIBTEX
@article{BUT165877,
author="Larissa {Moravčíková de Almeida Gouvea} and Zuzana {Kovacova} and Michael {Kitzmantel} and Erich {Neubauer} and Vít {Jan} and Ivo {Dlouhý},
title="Influence of Hot Pressing Sintering Temperature on the Properties of Low-Density Al0.5NbTa0.8Ti1.5V0.2Zr Refractory High-Entropy Alloy",
year="2021",
volume="1016",
number="1016",
month="January",
pages="940--945",
publisher="Trans Tech Publications",
address="Switzerland",
issn="1662-9752"
}