Publication detail

Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube

KRACÍK, P. TOMAN, F. POSPÍŠIL, J.

Czech title

Vliv rychlosti proudění plynu na proudění kapalného filmu ve vertikální trubici

English title

Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube

Type

journal article in Scopus

Language

en

Original abstract

When gas flows inside a vertical tube in which a thin liquid film runs down its wall, interfacial shear stress occurs at the gas-liquid interface. This stress is caused by the imperfectly smooth surface of the film running down. For intensification of heat transfer in heat exchangers where the vapour condenses, it is necessary to pay attention not only to the thickness of the liquid film on heat exchange surface, but also the character of the liquid film. This paper describes the influence of a gas flow velocity on a liquid film flow. The gas velocity effect is examined for a constant thickness of the liquid film. When the velocity of the gaseous medium changes, it is necessary to increase or decrease the liquid flow in order to keep the film thickness constant. The effect of shear stress is described for three different inner tube diameters (15.0, 20.0, and 25.0 mm) and for three different theoretical film thicknesses derived from the Nusselt criterion. The results are compared with theoretical, analytical relationships. In all the three tube diameters tested, the influence of the gas velocity is the most significant at low speeds, where the deviation from the theoretical course is the greatest. As the tube diameter decreases, the shear stress effect increases. At higher speeds of the gas and liquid film flow, pulsations start to occur, the film flow stops increasing, and the trend follows the theoretical, analytical relationships published in the professional literature.

Czech abstract

Když plyn proudí uvnitř svislé trubice, ve které je tenký kapalný film stékájící po její stěně, dochází ke smykovému napětí ve styčném rozhraní na rozhraní plyn-kapalina. Toto napětí je způsobeno stékáním nedokonale hladkého povrchu filmu. Pro zintenzivnění přenosu tepla ve výměnících tepla, kde páry kondenzují, je nutné věnovat pozornost nejen tloušťce kapalného filmu na povrchu výměny tepla, ale také charakteru kapalného filmu. Tento článek popisuje vliv rychlosti toku plynu na tok tekutého filmu. Účinek rychlosti plynu se zkoumá na konstantní tloušťku kapalného filmu. Když se mění rychlost plynného média, je nutné zvýšit nebo snížit tok kapaliny, aby se tloušťka filmu udržovala konstantní. Účinek smykového napětí je popsán pro tři různé vnitřní průměry trubek (15,0, 20,0 a 25,0 mm) a pro tři různé teoretické tloušťky filmu odvozené od Nussellova kritéria. Výsledky jsou porovnány s teoretickými analytickými vztahy. Ve všech třech testovaných průměrech trubek je vliv rychlosti plynu nejvýznamnější při nízkých rychlostech, kde je odchylka od teoretického průběhu největší. Jak se průměr trubky zmenšuje, zvyšuje se účinek smykového napětí. Při vyšších rychlostech proudění plynného a kapalného filmu začíná pulzace, tok filmu se zastavuje a trend sleduje teoretické analytické vztahy publikované v odborné literatuře.

English abstract

When gas flows inside a vertical tube in which a thin liquid film runs down its wall, interfacial shear stress occurs at the gas-liquid interface. This stress is caused by the imperfectly smooth surface of the film running down. For intensification of heat transfer in heat exchangers where the vapour condenses, it is necessary to pay attention not only to the thickness of the liquid film on heat exchange surface, but also the character of the liquid film. This paper describes the influence of a gas flow velocity on a liquid film flow. The gas velocity effect is examined for a constant thickness of the liquid film. When the velocity of the gaseous medium changes, it is necessary to increase or decrease the liquid flow in order to keep the film thickness constant. The effect of shear stress is described for three different inner tube diameters (15.0, 20.0, and 25.0 mm) and for three different theoretical film thicknesses derived from the Nusselt criterion. The results are compared with theoretical, analytical relationships. In all the three tube diameters tested, the influence of the gas velocity is the most significant at low speeds, where the deviation from the theoretical course is the greatest. As the tube diameter decreases, the shear stress effect increases. At higher speeds of the gas and liquid film flow, pulsations start to occur, the film flow stops increasing, and the trend follows the theoretical, analytical relationships published in the professional literature.

Keywords in Czech

kondenzátní film, průtok filmu, stabilita

Keywords in English

condensate film, film flow, stability

Released

01.08.2020

Publisher

The Italian Association of Chemical Engineering

Location

Italská republika

ISSN

2283-9216

Volume

81

Number

2020

Pages from–to

811–816

Pages count

6

BIBTEX


@article{BUT164778,
  author="Petr {Kracík} and Filip {Toman} and Jiří {Pospíšil},
  title="Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube",
  year="2020",
  volume="81",
  number="2020",
  month="August",
  pages="811--816",
  publisher="The Italian Association of Chemical Engineering",
  address="Italská republika",
  issn="2283-9216"
}