Publication detail

Dynamics and transport properties of Floquet topological edge modes in coupled photonic waveguides

PETRÁČEK, J. KUZMIAK, V.

Czech title

Dynamické a transportní vlastnosti Floquetových topologických okrajových modů ve vázaných fotonických vlnovodech

English title

Dynamics and transport properties of Floquet topological edge modes in coupled photonic waveguides

Type

journal article in Web of Science

Language

en

Original abstract

We study theoretically the Floquet edge states in a photonic analog of the driven Su-Schrieffer-Heeger model implemented by an array of identical single-mode dielectric waveguides, where the time-dependent driving is modeled by periodically bended waveguides. We combine the coupled-mode theory with the Floquet-Bloch analysis and within this framework determine a band structure of the periodic system. We develop a theoretical approach for calculation of the edge states in semi-infinite systems and investigate their topological properties. In particular, we explore the dynamics of the 0- and pi-edge states which reveal profound differences depending on their topological phase. To verify our observations, we simulate the power transport along the end of such a waveguide array and show that its spectra can be assigned to the excitation of the edge modes. The results obtained indicate that driving-induced topological properties of the edge modes can be exploited in controlling flow of light in periodically driven photonic structures and may provide insight into Floquet engineering of the realistic photonic systems.

Czech abstract

Teoreticky studujeme Floquetovy okrajové stavy ve fotonickém implementaci tzv. Su-Schrieffer-Heeger modelu. Model je založen na jednomodových vázaných vlnovodech. Formulace kombinuje teorii vázaných modů s Floquetovou-Blochovou analýzou. Prezentujeme pásovou strukturu periodického systému. K výpočtu okrajových stavů jsme v tomto rámci vyvinuli původní metodu a aplikovali k výzkumu topologických vlastností systému. Zkoumáme zejména dynamiku 0- a π-okrajových stavů a podrobně popisujeme rozdíly v závislosti na jejich topologické fázi. K ověření výsledků simulujeme přenos energie podél okraje takového systému vlnovodů.

English abstract

We study theoretically the Floquet edge states in a photonic analog of the driven Su-Schrieffer-Heeger model implemented by an array of identical single-mode dielectric waveguides, where the time-dependent driving is modeled by periodically bended waveguides. We combine the coupled-mode theory with the Floquet-Bloch analysis and within this framework determine a band structure of the periodic system. We develop a theoretical approach for calculation of the edge states in semi-infinite systems and investigate their topological properties. In particular, we explore the dynamics of the 0- and pi-edge states which reveal profound differences depending on their topological phase. To verify our observations, we simulate the power transport along the end of such a waveguide array and show that its spectra can be assigned to the excitation of the edge modes. The results obtained indicate that driving-induced topological properties of the edge modes can be exploited in controlling flow of light in periodically driven photonic structures and may provide insight into Floquet engineering of the realistic photonic systems.

Keywords in English

topological photonics; Floquet edge statess; Su-Schrieffer-Heeger model; coupled mode theory

Released

05.03.2020

Publisher

AMER PHYSICAL SOC

Location

COLLEGE PK

ISSN

2469-9926

Volume

101

Number

3

Pages from–to

1–10

Pages count

9

BIBTEX


@article{BUT162475,
  author="Jiří {Petráček},
  title="Dynamics and transport properties of Floquet topological edge modes in coupled photonic waveguides",
  year="2020",
  volume="101",
  number="3",
  month="March",
  pages="1--10",
  publisher="AMER PHYSICAL SOC",
  address="COLLEGE PK",
  issn="2469-9926"
}