Publication detail

On the SLM and EBM of Ti-6Al-4V ELI alloy for advanced knee arthroplasty

PÍŠKA, M. BUČKOVÁ, K.

Czech title

Slitiny Ti-6Al-4V vyrobené technologií SLM a EBM pro pokročilou kloubní artoplastiku

English title

On the SLM and EBM of Ti-6Al-4V ELI alloy for advanced knee arthroplasty

Type

presentation

Language

en

Original abstract

Research and development of a novel implant knee design and insertion technology, preservation of original healthy bone, light mass of the implant, prolongation of time for re-operation. Optimisation of technological routines for production of samples made from Ti6Al4V ELI powder suitable for knee implant production, testing of dimensional accuracy, quality, mechanical and fatigue properties, production of implant prototypes. Selective Laser Melting (SLM) and Electron Beam Melting (EBM) of the Ti6Al4V ELI alloy, advanced machining, analytical electron microscopy, mechanical, tribological and fatigue testing were used as principal techniques. Two series of solid cylindrical specimens (diameter 14mm, length 120mm; 24 bits) were made for the standard mechanical testing. Several samples of knee implants have been made and tested also. Both additive technologies proved to be competitive for the knee implant production. The EBM technology allowed a production of very fine structured materials with a low porosity (<0.1%), high mechanical properties of Ti6Al4V (tensile strength more than 1,000 MPa, elongation more than 12%), tumbled glossy surface (Ra<0.03) m, and better fatigue resistance (tension/thrust mode). A statistically significant low coefficient of friction on high molecular polyethylene (p<0.01) compared to the standard polishing was found due to smooth surface topography of samples. The novel design of the knee implant, digital technologies, EBM technology and surface post-processing of Ti6Al4V, allow to reduce the weight of the novel type of the distal femur implant (> 60%) with a higher preservation of the original bone. The EBM samples showed a better combination of tensile strengths, plasticity and fatigue resistance.

Czech abstract

Výzkum a vývoj nového tvaru a inserce kolenního implantátu, zachování původní zdravé kosti, lehká hmota implantátu, prodloužení doby pro re-operaci. Optimalizace klinických metod pro výrobu vzorků vyrobených z Ti6Al4V ELI prášku vhodného pro výrobu kolenních implantátů, testování rozměrové přesnosti, kvality, mechanických a únavových vlastností, výroby prototypů implantátů. Jako hlavní techniky byly použity selektivní laserové tavení (SLM) a tavení elektronovým paprskem (EBM) slitiny ELI Ti6Al4V, pokročilé obrábění, analytická elektronová mikroskopie, mechanické, tribologické a únavové testování. Pro standardní mechanické testování byly vyrobeny dvě série pevných válcových vzorků (průměr 14 mm, délka 120 mm, 24 kusů). Bylo vyrobeno a testováno několik vzorků kolenních implantátů. Obě aditivní technologie se ukázaly jako konkurenceschopné pro výrobu kolenních implantátů. Technologie EBM má nízkou poréznost (<0,1%), vysoké mechanické vlastnosti Ti6Al4V (pevnost v tahu více než 1000 MPa, prodloužení více než 12%), lesklý povrch (Ra <0,03) ma lepší odolnost proti únavě (režim tah / tah). Bylo zjištěno, že statisticky významný nízký koeficient tření na vysokomolekulárním polyethylenu (p <0,01) ve srovnání se standardním leštěním vykazuje hladkou povrchovou topografii vzorků. Nový design implantátového kolena, digitální technologie, EBM technologie a povrchové následné zpracování Ti6Al4V umožňují snížit hmotnost nového typu distálního femurového implantátu (> 60%) s vyšší ochranou původní kosti. Vzorky EBM vykazovaly lepší kombinaci pevnosti v tahu, plasticity a odolnosti proti únavě. Both additive technologies proved to be competitive for the knee implant production. The EBM technology allowed a production of very fine structured materials with a low porosity (<0.1%), high mechanical properties of Ti6Al4V (tensile strength more than 1,000 MPa, elongation more than 12%), tumbled glossy surface (Ra<0.03) m, and better fatigue resistance (tension/thrust mode). A statistically significant low coefficient of friction on high molecular polyethylene (p<0.01) compared to the standard polishing was found due to smooth surface topography of samples. The novel design of the knee implant, digital technologies, EBM technology and surface post-processing of Ti6Al4V, allow to reduce the weight of the novel type of the distal femur implant (> 60%) with a higher preservation of the original bone. The EBM samples showed a better combination of tensile strengths, plasticity and fatigue resistance.

English abstract

Research and development of a novel implant knee design and insertion technology, preservation of original healthy bone, light mass of the implant, prolongation of time for re-operation. Optimisation of technological routines for production of samples made from Ti6Al4V ELI powder suitable for knee implant production, testing of dimensional accuracy, quality, mechanical and fatigue properties, production of implant prototypes. Selective Laser Melting (SLM) and Electron Beam Melting (EBM) of the Ti6Al4V ELI alloy, advanced machining, analytical electron microscopy, mechanical, tribological and fatigue testing were used as principal techniques. Two series of solid cylindrical specimens (diameter 14mm, length 120mm; 24 bits) were made for the standard mechanical testing. Several samples of knee implants have been made and tested also. Both additive technologies proved to be competitive for the knee implant production. The EBM technology allowed a production of very fine structured materials with a low porosity (<0.1%), high mechanical properties of Ti6Al4V (tensile strength more than 1,000 MPa, elongation more than 12%), tumbled glossy surface (Ra<0.03) m, and better fatigue resistance (tension/thrust mode). A statistically significant low coefficient of friction on high molecular polyethylene (p<0.01) compared to the standard polishing was found due to smooth surface topography of samples. The novel design of the knee implant, digital technologies, EBM technology and surface post-processing of Ti6Al4V, allow to reduce the weight of the novel type of the distal femur implant (> 60%) with a higher preservation of the original bone. The EBM samples showed a better combination of tensile strengths, plasticity and fatigue resistance.

Keywords in Czech

SLM; EBM; Ti-6Al-4V ELI; koleno; implant

Keywords in English

SLM; EBM; Ti-6Al-4V ELI; knee; arthroplasty

Released

04.09.2019

Publisher

British Orthopaedics Research Society

Location

Cardiff

Pages from–to

25–25

Pages count

1