Publication detail

Electronic structure of La2/3Sr1/3MnO3: Interplay of oxygen octahedra rotations and epitaxial strain

ZAHRADNÍK, M. MAROUTIAN, T. ZELENÝ, M. HORÁK, L. KURIJ, G. MALEČEK, T. BERAN, L. VIŠŇOVSKÝ, Š. AGNUS, G. LECOEUR, P. VEIS, M.

English title

Electronic structure of La2/3Sr1/3MnO3: Interplay of oxygen octahedra rotations and epitaxial strain

Type

journal article in Web of Science

Language

en

Original abstract

Influence of epitaxial strain and oxygen octahedra rotations on electronic structure of La2/3Sr1/3MnO3 ultrathin films was systematically studied. The investigated films were grown by pulsed laser deposition on four different substrates: cubic (001)-oriented LaAlO3, (001) (LaAlO3)(1/3) (Sr2AlTaO6)(2/3), (001) SrTiO3, and orthorhombic (110) DyScO3, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements at room temperature confirmed the presence of two previously reported electronic transitions in the spectra of all films. Moreover they revealed another electronic transition around 4.3 eV only in the spectra of films grown under compressive strain. We proposed classification of this transition as a crystal field paramagnetic Mn t(2g) -> e(g) transition. Ab initio calculations were employed to distinguish between the potential influence of oxygen octahedra rotations and distortions. The ab initio calculations indicated a negligible influence of oxygen octahedra rotations on magneto-optical properties of La2/3Sr1/3MnO3. They further supported the proposed classification of the additional electronic transition, showing a key role of strain in controlling the electronic structure of ultrathin perovskite films.

English abstract

Influence of epitaxial strain and oxygen octahedra rotations on electronic structure of La2/3Sr1/3MnO3 ultrathin films was systematically studied. The investigated films were grown by pulsed laser deposition on four different substrates: cubic (001)-oriented LaAlO3, (001) (LaAlO3)(1/3) (Sr2AlTaO6)(2/3), (001) SrTiO3, and orthorhombic (110) DyScO3, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements at room temperature confirmed the presence of two previously reported electronic transitions in the spectra of all films. Moreover they revealed another electronic transition around 4.3 eV only in the spectra of films grown under compressive strain. We proposed classification of this transition as a crystal field paramagnetic Mn t(2g) -> e(g) transition. Ab initio calculations were employed to distinguish between the potential influence of oxygen octahedra rotations and distortions. The ab initio calculations indicated a negligible influence of oxygen octahedra rotations on magneto-optical properties of La2/3Sr1/3MnO3. They further supported the proposed classification of the additional electronic transition, showing a key role of strain in controlling the electronic structure of ultrathin perovskite films.

Keywords in English

Perovskite, Ultrathin films, Ab initio calculations, Magneto-optical Kerr effect

Released

22.05.2019

ISSN

2469-9950

Volume

99

Number

-

Pages from–to

195138–-

Pages count

10

BIBTEX


@article{BUT157160,
  author="Martin {Zahradník} and Thomas {Maroutian} and Martin {Zelený} and Lukáš {Horák} and Georg {Kurij} and Tomáš {Maleček} and Lukáš {Beran} and Štefan {Višňovský} and Guillaume {Agnus} and Philippe {Lecoeur} and Martin {Veis},
  title="Electronic structure of La2/3Sr1/3MnO3: Interplay of oxygen octahedra rotations and epitaxial strain",
  year="2019",
  volume="99",
  number="-",
  month="May",
  pages="195138---",
  issn="2469-9950"
}