Publication detail
Extreme value estimation for correlated observations
HOLEŠOVSKÝ, J. FUSEK, M. MICHÁLEK, J.
Czech title
Odhady extrémních hodnot pro korelovaná pozorování
English title
Extreme value estimation for correlated observations
Type
conference paper
Language
en
Original abstract
Statistical modeling of extreme events is the object of interest in many application areas. When estimating such rare events from a time series, extreme value theory is commonly used. In that case, series with independent members are required. However, the assumption of independence is not satisfied in many situations. There are two approaches (block maxima, peaks-over-threshold) which result in series with independent members, but the length of the series is substantially reduced. In this paper, stationary series with short-time dependence described by the extremal index theta is considered, and two estimators of theta are introduced. Behavior of the estimators is assessed using simulations. The described methods are used in an analysis of real hydrological data, and compared with classical peaks-over-threshold approach.
Czech abstract
Statistické modelování extrémních hodnot patří k významným oblastem mnoha vědních odvětví. Odhady frekvencí výskytů těchto řídkých událostí pro časové řady jsou běžně postaveny na teorii extrémních hodnot, která ovšem využívá nezávislých pozorování. Tento požadavem ovšem často není splněn. V praktických situacích jsou používány dva přístupy (bloková maxima a peaks-over-threshold), pomocí nichž je původní řada zredukována (často významně) na řadu s vzájemně nezávislými pozorováními. V příspěvku uvažujeme stacionární řady s "krátkodobou závislostí", která může být popsána pomocí parametru tzv. extremálního indexu. Jsou představeny dva odhady extremálního indexu a jejich chování je studováno za pomocí simulací. Získané výsledky jsou aplikovány k analýze reálných hydrologických dat a také srovnány s přístupem peaks-over-threshold.
English abstract
Statistical modeling of extreme events is the object of interest in many application areas. When estimating such rare events from a time series, extreme value theory is commonly used. In that case, series with independent members are required. However, the assumption of independence is not satisfied in many situations. There are two approaches (block maxima, peaks-over-threshold) which result in series with independent members, but the length of the series is substantially reduced. In this paper, stationary series with short-time dependence described by the extremal index theta is considered, and two estimators of theta are introduced. Behavior of the estimators is assessed using simulations. The described methods are used in an analysis of real hydrological data, and compared with classical peaks-over-threshold approach.
Keywords in Czech
rozdělení extrémních hodnot, extremální index, peaks over threshold, stacionární proces
Keywords in English
extreme value distribution, extremal index, peaks over threshold, stationary process
RIV year
2014
Released
25.06.2014
Publisher
Brno University of Technology, Faculty of Mechanical Engineering, Institute of Automation and Computer Science
Location
Brno, Czech Republic
ISBN
978-80-214-4984-8
ISSN
1803-3814
Book
Mendel 2014 20th International Conference of Soft Computing
Pages from–to
359–364
Pages count
6
BIBTEX
@inproceedings{BUT108396,
author="Jan {Holešovský} and Michal {Fusek} and Jaroslav {Michálek},
title="Extreme value estimation for correlated observations",
booktitle="Mendel 2014 20th International Conference of Soft Computing",
year="2014",
month="June",
pages="359--364",
publisher="Brno University of Technology, Faculty of Mechanical Engineering, Institute of Automation and Computer Science",
address="Brno, Czech Republic",
isbn="978-80-214-4984-8",
issn="1803-3814"
}