Course detail
Theory of Metal-Forming Technology Processes
FSI-9TTT Acad. year: 2025/2026 Winter semester
Significance of plasticity theory in solving problems of metal forming. Application of plasticity theory in computation models of theory of metal forming. Analysis of analytical and experimental-analytical methods for calculating the resistance to deformation and deformation, with computer support. Boundary conditions of deformation in calculation models in interaction with metal forming tools. Study of the processes of simulating macroplastic deformation for concrete metal forming technologies under real thermomechanical conditions. Effect of the rate of deformation. Using the FEM when dimensioning metal forming tools.
Supervisor
Department
Learning outcomes of the course unit
Prerequisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Language of instruction
Czech
Aims
Specification of controlled education, way of implementation and compensation for absences
The study programmes with the given course
Programme D-STG-P: Manufacturing Technology, Doctoral
branch ---: no specialisation, 0 credits, recommended course
Type of course unit
Lecture
20 hours, optionally
Syllabus
1. Physical essence and mechanisms of plastic deformation, principles of metal forming.
2. Criteria of bulk and sheet formability.
3. Boundary conditions of deformation – FLD diagrams.
4. Essence and significance of the most widely used theories of plastic deformation.
5. Significance and application of theory of plasticity in deformation analysis.
6. Analysis of analytical and experimental-analytical methods for calculating the resistance to deformation.
7. Analysis of deformation-stress curves, resistance to deformation, their application in materials models.
8. Evaluation of dynamic mechanical properties by the Taylor Anvil Test.
9. Evaluation of dynamic mechanical properties by the Split Hopkinson Pressure and Tensile Bar test.
10.Development of computation models of analytical solution methods and their computer support.
11.Computation models of metal forming at high rates and energies.
12.Numerical methods of solving plastic deformations, simulation of metal forming technologies.
13.FEM in the solution of metal forming technology and of metal-forming tool loading.