Course detail

Principles of Equipment for Physical Technologies

FSI-TPZ-A Acad. year: 2025/2026 Summer semester

Learning outcomes of the course unit

Prerequisites

Planned learning activities and teaching methods

Assesment methods and criteria linked to learning outcomes

Language of instruction

English

Aims

Specification of controlled education, way of implementation and compensation for absences

The study programmes with the given course

Programme B-FIN-P: Physical Engineering and Nanotechnology, Bachelor's
branch ---: no specialisation, 3 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Syllabus

Introduction to physical technologies.
Summary and characterization of selected physical technologies and analytical methods.
Application of physical technologies: from surfaces to nanotechnologies.
Principles and tools of physical technologies.
Electron sources (Electron emission, Extraction and forming of electron beams, Particle optical aberrations, Design of electron beam sources).
Ion beam sources (Ion preparation methods, Electron impact ion beam sources, Plasma, Ion extraction from plasma, Extraction ad forming of ion beams, Ion beam parameters, Plasma ion beam sources).
Atomic and molecular beam sources (Atomic source overview, Gas effusion, Angular distribution of particle flux from the slit, Emissive diagram of neutral beam particle sources, Collimator, Thermal atomic beam sources).
Fundamentals of particle optics (Analogy between particle and geometrical optics, Laplace equation, Paraxial equation of trajectory, Role of lenses in particle optics, Analytical methods in particle optics, Particles in magnetic fields, Scheme of the simple particle optic system, Distribution of the potential on the axis, Computer simulation of ion and electron beams, Space charge).
Interaction of particles with solids (Interaction of electrons and ions with surfaces, Scattering, Sputtering, Channelling, Interaction spectra)
Physical technologies (Deposition of thin films and coatings: CVD, PECVD, PVD, magnetron sputtering, ion beam sputtering, direct ion beam deposition, plasma and ion beam etching, lithography, implantation, epitaxy: MBE, MOMBE).
New trends in physical technologies.

Exercise

6 hours, compulsory

Syllabus

In addition to calculation of supportive theoretical examples (taking place during the whole semester), the students work on individual projects (computer code SIMION).

Computer-assisted exercise

7 hours, compulsory

Syllabus

At practicing in a computational lab the students will learn to use a computer code SIMION for a design of optical systems of electron and ion beam facilities.