Course detail

Mathematical Modelling

FSI-PMM Acad. year: 2024/2025 Summer semester

Due to the development of computer technology, the numerical simulation has become helpful in designing and optimising foundry processes. Mathematical simulation is aimed at the tuning of the designed technology in the phase of production preparation in order to avoid expensive experimental testing. The simulation of foundry processes connects numerical methods, physics and computer technology. It enables the study of processes during melt flow, solidification and cooling of castings.

Learning outcomes of the course unit

Prerequisites

Planned learning activities and teaching methods

Assesment methods and criteria linked to learning outcomes

Language of instruction

Czech

Aims

Specification of controlled education, way of implementation and compensation for absences

The study programmes with the given course

Programme N-SLE-P: Foundry Technology, Master's
branch ---: no specialisation, 4 credits, compulsory

Programme C-AKR-P: , Lifelong learning
branch CLS: , 4 credits, elective

Type of course unit

 

Lecture

13 hours, compulsory

Syllabus

1. Introduction to numerical simulation of foundry processes.
2. Application of CAD system in foundry processes.
3. Methods of numerical simulation.
4. Basic knowledge of heat transfer.
5. Initial condition definition.
6. Boundary condition definition.
7. Thermo-physical properties.
8. Calculation of porosity defects in casting.
9. Simulation of gravity sand casting technology.
10. Simulation of high and low pressure die casting technology.
11. Investment casting technology.
12. Special processes; semi-solid processes.
13. Post-processing and industrial cases.

Computer-assisted exercise

26 hours, compulsory

Syllabus

1. Geometry design – data import and export.
2. Preparation of surface and volume meshes.
3. Repairing of bad meshes.
4. Definition of initial and boundary conditions.
5. Calculation definition; modules, calculation steps.
6. Examples of gravity casting calculation.
7. Examples of pressure casting calculation.
8. Examples of investment casting calculation.
9. Calculation of special processes.
10. Porosity calculation.
11. Optimisation of gating and feeding systems.
12. Post-processing.
13. Results validation.