Course detail

Optimization Models

FSI-0OM Acad. year: 2021/2022 Winter semester

The course presents fundamental mathematical models and methods for solving of optimization engineering problems. It is based on the author's experience with similar courses at the EU and US universities (Computer-Aided Optimization). It is suitable for students interested in the solution of such problems coming from various specializations and years of study. Examples of typical problems involve cases studied and solved within the framework of BUT and FME projects. Particular instances are solved by using a suitable software (MS Excel, Matlab, GAMS aj.). Modelling rules are systematicaly applied: problem formulation and analysis, model building and classification, the use of theory, transforamtions and algorithms, solution analysis and interpretation. The examples of linear, network, nonlinear, integer, dynamic and uncertain models are introduced.

Learning outcomes of the course unit

Although the course is designed for mathematical engineers, it is useful also for engineering students dealing with optimization problems.

Prerequisites

Basic concepts of calculus, linear algebra, and programming.

Planned learning activities and teaching methods

The course is taught through exercises which are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

The student is asked to participate on the solution of proposed problems.

Language of instruction

Czech

Aims

The course objective is to emphasize optimization modelling and solution methods related knowledge. Computer-aided optimization is focused.

Specification of controlled education, way of implementation and compensation for absences

The active participation at seminars is assumed.

The study programmes with the given course

Programme B-MAI-P: Mathematical Engineering, Bachelor's
branch ---: no specialisation, 2 credits, elective

Type of course unit

 

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

Basic models (applied in logistics)
Linear models (production related applications)
Special (network flow and integer) models (transportation problems)
Nonlinear models (aplikace norem)
General models (parametric, multicriteria, nondeterministic,
dynamic, hierarchical)

Course participance is obligatory.