Course detail
Optimization Models
FSI-0OM Acad. year: 2021/2022 Winter semester
The course presents fundamental mathematical models and methods for solving of optimization engineering problems. It is based on the author's experience with similar courses at the EU and US universities (Computer-Aided Optimization). It is suitable for students interested in the solution of such problems coming from various specializations and years of study. Examples of typical problems involve cases studied and solved within the framework of BUT and FME projects. Particular instances are solved by using a suitable software (MS Excel, Matlab, GAMS aj.). Modelling rules are systematicaly applied: problem formulation and analysis, model building and classification, the use of theory, transforamtions and algorithms, solution analysis and interpretation. The examples of linear, network, nonlinear, integer, dynamic and uncertain models are introduced.
Supervisor
Department
Learning outcomes of the course unit
Although the course is designed for mathematical engineers, it is useful also for engineering students dealing with optimization problems.
Prerequisites
Basic concepts of calculus, linear algebra, and programming.
Planned learning activities and teaching methods
The course is taught through exercises which are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes
The student is asked to participate on the solution of proposed problems.
Language of instruction
Czech
Aims
The course objective is to emphasize optimization modelling and solution methods related knowledge. Computer-aided optimization is focused.
Specification of controlled education, way of implementation and compensation for absences
The active participation at seminars is assumed.
The study programmes with the given course
Programme B-MAI-P: Mathematical Engineering, Bachelor's
branch ---: no specialisation, 2 credits, elective
Type of course unit
Computer-assisted exercise
26 hours, compulsory
Teacher / Lecturer
Syllabus
Basic models (applied in logistics)
Linear models (production related applications)
Special (network flow and integer) models (transportation problems)
Nonlinear models (aplikace norem)
General models (parametric, multicriteria, nondeterministic,
dynamic, hierarchical)
Course participance is obligatory.