Course detail
Technical Diagnostics I
FSI-XT1 Acad. year: 2021/2022 Summer semester
The course is focused on modern knowledge of technical diagnostics of machines and equipment. Emphasis is placed on theoretical knowledge of technical diagnostics, such as integration of technical diagnostics into product quality, clarification and description of diagnostic systems, further analysis of diagnostic models, diagnostic signals and division of technical diagnostics according to various aspects. Subsequently, attention is focused on selected diagnostic methods, such as thermodiagnostics and other methods are outlined, which will be discussed in detail in the following subject. Emphasis is always placed on the use of individual diagnostics to assess the condition of a technical object. In this course, the selected and discussed methods are important for understanding multi-parameter diagnostics. The course is supplemented by exercises where the most important topics are properly practiced. There is also a discussion of the results and conclusions in the exercises. The course Technical Diagnostics I is followed by the course Technical Diagnostics II, which is a continuation of the description and analysis of other diagnostic methods suitable for assessing the state of technical objects. By studying both courses the student gains comprehensive knowledge of multiparametric diagnostics of machines and equipment. The findings are also based on the content of Industry 4.0.
Supervisor
Learning outcomes of the course unit
Students will acquire extended knowledge of technical diagnostics, which will enable them to engage in industrial engineering and electrical engineering in solving various problems related to the issue.
Prerequisites
Knowledge of mathematics and physics on the level of the bachelor studies completed so far is assumed.
Planned learning activities and teaching methods
The subject consists of lectures and laboratory. According to the possibility of teaching can be organized lectures for students by practitioners and excursions to companies focused on activities related to the course content.
Assesment methods and criteria linked to learning outcomes
The course consists of exercises and lectures. Exercise is completed by credit (awarded in the 13th week). To obtain it is required 100% participation in exercises and activity in exercises. Students will work out the individual work in the prescribed range and quality. Based on the quality of the work in the exercise, the student earns up to 30 points for the exam The work must be submitted in writing and checked and recognized by the teacher. The test is realized by written test, student can get up to 70 points from this test, where 30 points from exercises. Evaluation of the test result is given by the ECTS grading scale.
Language of instruction
Czech
Aims
The objective of the subject is to acquire the theoretical and practical knowledge of the diagnostics of technical systems.
Specification of controlled education, way of implementation and compensation for absences
The student attendance is checked in tutorials (presence and activity). The 100% participation in tutorials is required, and in case of absence, the student will be obliged to compensate, the alternative attendance will be specified by the lecturer.
The study programmes with the given course
Programme N-KSB-P: Quality, Reliability and Safety, Master's
branch ---: no specialisation, 5 credits, compulsory
Type of course unit
Lecture
26 hours, optionally
Teacher / Lecturer
Syllabus
1. Basic terminology of technical diagnostics.
2. Diagnostic systems and their description.
3. Sensors, sensor parameters. Smart sensors.
4. Technical diagnostics, classification, methods and means.
5. Data collection for diagnostics of machines and equipment, ways of their evaluation. Statistical data analysis.
6. Determination of machine and equipment condition in technical diagnostics, classification methods, frequency data analysis.
7. Determination of machines and equipment in technical diagnostics, expert systems, fuzzy systems, neural networks.
8. Technical diagnostics within Industry 4.0, cloud systems, IoT systems.
9. Thermodiagnostics – physical properties of sensors.
10. Thermodiagnostics – contact methods.
11. Thermodiagnostics – non-contact methods, thermography.
12. Non-destructive diagnostics using thermography.
13. Other methods of technical diagnostics (level, flow rate and others).
Computer-assisted exercise
26 hours, compulsory
Teacher / Lecturer
Syllabus
1. Introduction, organizational issues, work safety, basics of technical diagnostics, instrument diagnostic tools.
2. Characteristics of instrumentation used in practice. Basic parameters of instruments, basic operation of instruments.
3. Verification of sensor properties for contact temperature measurement – static properties.
4. Verification of sensor properties for contact temperature measurement – dynamic properties
5. Verification of thermal imager properties – basic measurement, SW processing.
6. Verification of thermal imaging properties – measurements focused on thermal imaging properties.
7. Determination of emissivity of various materials based on measurements.
8. Thermodiagnostics of rotating machines.
9. Thermodiagnostics of rotating machines.
10. Non-destructive diagnostics using thermography.
11. Remote diagnostics of machines, on-line diagnostics of machines.
12. Completion and evaluation of technical reports (protocols).
13. Credit.