Course detail

Flight Performance

FSI-FLV Acad. year: 2021/2022 Winter semester

Subject is a part of Profesional pilot theoretial course. It is focused on enlarging of Flight mechanics knowledge and explanation of its confluence with requirements of flight rules, mainly EU-OPS1.
Students will learn to determine of airplane limitaitons during all flight phases. They get knowledge important for effective and safe aircraft usage in comercial air transport.

Learning outcomes of the course unit

Determination and evaluation of airplane performance from safety point of view, defined by regulations of commercial air transport, mainly EU-OPS1 and understanding of effective airplane usage with respect of its performance.

Prerequisites

Basics of mathematics – differential and integral calculus, common differential equations. Basics of common mechanics – force effect on a body, kinematics, dynamics.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Conditions to obtain the course-unit credit: attendance at exercises (80% at the minimum), presentation of calculation tasks records. The exam comprises written (the essential one) and oral parts. Evaluation fulfils FME BUT rules.

Language of instruction

Czech

Aims

The subject is focused on enlarging of Flight mechanics knowledge and explanation of its confluence with requirements of flight rules, mainly EU-OPS1. Students will learn to determine of airplane limitaitons during all flight phases. They get knowledge important for effective and safe aircraft usage in comercial air transport.

Specification of controlled education, way of implementation and compensation for absences

Lectures and seminars are compulsory, and the attendance (80% at the minimum) is checked and recorded. The absence (in justifiable cases) can be compensated by personal consultation with the lecturer and elaboration of individually assigned topics and exercises. Individual tasks must be finished and handed in the week credits are awarded at the latest.

The study programmes with the given course

Programme B3S-P: Engineering, Bachelor's
branch B-PRP: Professional Pilot, 5 credits, compulsory

Type of course unit

 

Lecture

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Forces acting on the airplane, power units characteristics, level flight characteristics
2. Characteristics of climb and descent flight, range, endurance
3. Take-off, landing, flight with asymmetric thrust
4. Airplane performance requirements, Aircraft performance classification, declarated runway parameters, gross and net performance
5. Class B – Single engine aircrafts: Performance requirements, performance determination
6. Class B – Multi engine aircrafts: Performance requirements, performance determination
7. Class A: Take-off requirements, take-off speeds
8. Class A: Decision speed, balanced field, unbalanced field
9. Class A: Non standard take-off procedures, take-off climb
10. Class A: Noise abatement procedures, take-off mass limitations
11. Class A: Climb to cruise altitude, cruise, cruise speed and altitude limitations
12. Class A: Cruise with one (two) engine inoperative, Range limit, ETOPS
13. Class A: Descent, landing

Exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

1. Forces acting on the airplane, power units characteristics, level flight characteristics
2. Characteristics of climb and descent flight, range, endurance
3. Take-off, landing, flight with asymmetric thrust
4. Airplane performance requirements, Aircraft performance classification, declarated runway parameters, gross and net performance
5. Class B – Single engine aircrafts: Performance requirements, performance determination
6. Class B – Multi engine aircrafts: Performance requirements, performance determination
7. Class A: Take-off requirements, take-off speeds
8. Class A: Decision speed, balanced field, unbalanced field
9. Class A: Non standard take-off procedures, take-off climb
10. Class A: Noise abatement procedures, take-off mass limitations
11. Class A: Climb to cruise altitude, cruise, cruise speed and altitude limitations
12. Class A: Cruise with one (two) engine inoperative, Range limit, ETOPS
13. Class A: Descent, landing