Course detail

Reliability Fundamentals

FSI-EZS Acad. year: 2021/2022 Winter semester

The subject is focused on the most sophisticated knowledge on reliability focusing on machines and instrumentation.
Attention is focused on clarification of reliability term and its merging into quality including terminology and standards. Emphasis is laid on the selected issues from the reliability management. Possible failures which can occur in machines are also described and classified. Furthermore, the reliability indicators of unrecovered and recovered objects are discussed. The analysis of failure methods and consequences is also explained on the practical examples (FMEA, FMECA). Last but not least, reliability tests, system reliability and its possible increase are described.

Learning outcomes of the course unit

The student will acquire basic knowledge of reliability of technical systems.
This will enable him/her to become knowledgeable in industrial engineering and electrotechnical practice in solving various problems related to the issue.

Prerequisites

Knowledge of mathematics and physics on the secondary education level as well as knowledge of the area in question within the scope of previous bachelor-level studies are assumed.

Planned learning activities and teaching methods

The subject consists of lectures and tutorials. The lectures are focused on the basic principles and the theory of problems. Tutorials are focused on the practical knowledge gained in lectures, and in an appropriate semester section completed with computer support. Depending upon the possibilities, the lectures of the specialists from industrial practice as well as the excursions in the companies, whose activities relate to the subject, are also organized.

Assesment methods and criteria linked to learning outcomes

The course consists of exercises and lectures. Exercise is completed by credit (awarded in the 13th week). To obtain it is required 100% participation in exercises and activity in exercises. Students will work out the individual work in the prescribed range and quality. Based on the quality of the work in the exercise, the student earns up to 30 points for the exam The work must be submitted in writing and checked and recognized by the teacher. The test is realized by written test, student can get up to 70 points from this test, where 30 points from exercises. Evaluation of the test result is given by the ECTS grading scale.

Language of instruction

Czech

Aims

The objective of the course is to obtain theoretical knowledge and practical experience in the basics of reliability of technical systems.

Specification of controlled education, way of implementation and compensation for absences

The students’ participation in seminars and activity. 100% participation in seminars is required; in case of absence, the student is obliged to substitute for the missed tuition in a way determined by the lecturer.

The study programmes with the given course

Programme B3S-P: Engineering, Bachelor's
branch B-KSB: Quality, Reliability and Safety, 5 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Specification of quality and reliability terms
2. Mathematical tools in reliability
3. Terminology in reliability
4. Standards in the reliability field
5. Reliability management – selected issues (part 1)
6. Reliability management – selected issues (part 2)
7. Reliability indicators for objects unrecovered
8. Reliability indicators for objects recovered
9. System reliability increase
10. Failure /consequence analysis
11. Reliability tests
12. System reliability evaluation
13. Demonstrations on the topics covered

Exercise

18 hours, compulsory

Teacher / Lecturer

Syllabus

1. Introduction, organizational issues, quality and reliability, life phases in view of reliability
2. Mathematical tools for reliability
3. Terminology and standards in reliability field
4. Reliability management – selected issues
5. Reliability and failures of machines and instrumentation
6. Reliability indicators from unrecovered and recovered objects
7. Failure /consequence analysis
8. Reliability tests and system reliability
9. Credit

Computer-assisted exercise

8 hours, compulsory

Syllabus

1. Mathematical tools in reliability
2. Reliability indicators for unrecovered objects
3. Reliability indicators for recovered objects
4. Failure /consequence analysis