Course detail
Aerostructures Capability
FSI-OPK-A Acad. year: 2021/2022 Summer semester
Comprehensive overview of of stress calculation , deformation and load-bearing capacity of thin-walled structures. Methods of weight reduction and efficient use of material. Stability of rods and walls. Calculations of load-bearing capacity of spar and semi-monocoque thin-walled structures. Calculations of aircraft parts. Sandwich construction.
Supervisor
Department
Learning outcomes of the course unit
The course enables students to realize typical calculations of aircraft thin-walled structures in non-linear areas of loading.
Prerequisites
The basic knowledge of mathematics, mechanics, structure and strength. Passing of OSZ-A Aircraft design course.
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes
Conditions for the course-unit credit award: participation in lessons (80% at least), presentation of the report elaboration from laboratory exercises. The exam has written (theoretical part and practical exercises) and oral parts.
Language of instruction
English
Aims
The goal is to familiarize students with the most important airworthiness requirements, to explain the theoretical basis of tension calculations and deformation of thin-walled aircraft structures. Students will acquire theoretical and practical knowledge of stability of rods and walls.
Specification of controlled education, way of implementation and compensation for absences
Lectures are not compulsory, attendance is registrated. Exercises are compulsory, and the attendance (80% at least) is checked and recorded. The absence (in justifiable cases) can be compensated by personal consultation with the lecturer and elaboration of individually assigned topics and exercises. Individual tasks must be finished and handed in the week course-unit credits are awarded at the latest
The study programmes with the given course
Programme N-AST-A: Aerospace Technology, Master's
branch ---: no specialisation, 5 credits, compulsory
Type of course unit
Lecture
52 hours, optionally
Teacher / Lecturer
Syllabus
1. Thin-walled structures. Open-cross section.
2. Shear stresses in open cross-section. Center of Shear.
3. Deplanation. Free and Non-free torsion of open cross-sections.
4. Constructions with closed cross-section. Twist of closed cross section.
5. Bending without twist – center of bending shear of closed cross-section. Influence of symmetry.
6. Shear flows in multi-box structures. Twist-free bend.
7. Stability of bars, influence of combined load. Stability of walls, influence of curvature and boundary conditions.
8. Spar with thin web.
9. Spar structures as box structures.
10. Capacity of spar, semi-monocoque and monocoque structures.
11. Method of proportional loading.
12. Optimization of aircraft structures in terms of weight savings
Laboratory exercise
4 hours, compulsory
Syllabus
1. Laboratory static tests of rods.
2. Laboratory static tests of walls.
3. Attendance on the aircraft structure test.
Exercise
22 hours, compulsory
Teacher / Lecturer
Syllabus
1. Calculation of bar deformation.
2. Calculations of open cross-sections. Shear flows.
3. Shear center.
4. Calculations of structures with closed cross-sections.
5. Calculation of shear flows in multi-box structures.
6. Spar with unstable web – application of theory.
7. Calculation of torsion boox capability.
8. Calculation of panel capability.