Detail publikace
Hilbert spaces and C*-algebras are not finitely concrete
LIEBERMAN, M. VASEY, S. ROSICKÝ, J.
Anglický název
Hilbert spaces and C*-algebras are not finitely concrete
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.
Anglický abstrakt
We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.
Klíčová slova anglicky
Hilbert space; C?-algebra; Faithful functor preserving directed colimits
Vydáno
01.04.2023
Nakladatel
ELSEVIER
Místo
AMSTERDAM
ISSN
0022-4049
Ročník
227
Číslo
4
Počet stran
9
BIBTEX
@article{BUT181494,
author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický},
title="Hilbert spaces and C*-algebras are not finitely concrete",
year="2023",
volume="227",
number="4",
month="April",
publisher="ELSEVIER",
address="AMSTERDAM",
issn="0022-4049"
}