Detail publikace

Hilbert spaces and C*-algebras are not finitely concrete

LIEBERMAN, M. VASEY, S. ROSICKÝ, J.

Anglický název

Hilbert spaces and C*-algebras are not finitely concrete

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.

Anglický abstrakt

We show that no faithful functor from the category of Hilbert spaces with injective linear contractions into the category of sets preserves directed colimits. Thus Hilbert spaces cannot form an abstract elementary class, even up to change of language. We deduce an analogous result for the category of commutative unital C*- algebras with *-homomorphisms. This implies, in particular, that this category is not axiomatizable by a first-order theory, a strengthening of a conjecture of Bankston. (C) 2022 Elsevier B.V. All rights reserved.

Klíčová slova anglicky

Hilbert space; C?-algebra; Faithful functor preserving directed  colimits

Vydáno

01.04.2023

Nakladatel

ELSEVIER

Místo

AMSTERDAM

ISSN

0022-4049

Ročník

227

Číslo

4

Počet stran

9

BIBTEX


@article{BUT181494,
  author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický},
  title="Hilbert spaces and C*-algebras are not finitely concrete",
  year="2023",
  volume="227",
  number="4",
  month="April",
  publisher="ELSEVIER",
  address="AMSTERDAM",
  issn="0022-4049"
}