Detail publikace
On stability intervals of Euler methods for a delay differential equation
HRABALOVÁ, J.
Český název
On stability intervals of Euler methods for a delay differential equation
Anglický název
On stability intervals of Euler methods for a delay differential equation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
en
Originální abstrakt
The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.
Český abstrakt
The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.
Anglický abstrakt
The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.
Klíčová slova česky
delay differential equation, Euler methods, asymptotic stability
Klíčová slova anglicky
delay differential equation, Euler methods, asymptotic stability
Rok RIV
2012
Vydáno
07.02.2012
Nakladatel
Aplimat
Místo
Bratislava
ISBN
978-80-89313-58-7
Kniha
APLIMAT 11th INTERNATIONAL CONFERENCE
Strany od–do
153–160
Počet stran
8
BIBTEX
@inproceedings{BUT89854,
author="Jana {Dražková},
title="On stability intervals of Euler methods for a delay differential equation",
booktitle="APLIMAT 11th INTERNATIONAL CONFERENCE",
year="2012",
month="February",
pages="153--160",
publisher="Aplimat",
address="Bratislava",
isbn="978-80-89313-58-7"
}