Detail publikace

On stability intervals of Euler methods for a delay differential equation

HRABALOVÁ, J.

Český název

On stability intervals of Euler methods for a delay differential equation

Anglický název

On stability intervals of Euler methods for a delay differential equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.

Český abstrakt

The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.

Anglický abstrakt

The paper discusses the asymptotic stability regions of Euler discretizations for a linear delay differential equation y'(t) = a y(t-\tau). We compare our results with the asymptotic stability domain for the underlying delay differential equation.

Klíčová slova česky

delay differential equation, Euler methods, asymptotic stability

Klíčová slova anglicky

delay differential equation, Euler methods, asymptotic stability

Rok RIV

2012

Vydáno

07.02.2012

Nakladatel

Aplimat

Místo

Bratislava

ISBN

978-80-89313-58-7

Kniha

APLIMAT 11th INTERNATIONAL CONFERENCE

Strany od–do

153–160

Počet stran

8

BIBTEX


@inproceedings{BUT89854,
  author="Jana {Dražková},
  title="On stability intervals of Euler methods for a delay differential equation",
  booktitle="APLIMAT 11th INTERNATIONAL CONFERENCE",
  year="2012",
  month="February",
  pages="153--160",
  publisher="Aplimat",
  address="Bratislava",
  isbn="978-80-89313-58-7"
}