Detail publikace

Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths

ŠEDA, M.

Anglický název

Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.

Anglický abstrakt

In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.

Klíčová slova anglicky

single shortest path problem, fuzzy ranking, binary heap, priority queue

Rok RIV

2001

Vydáno

01.09.2001

Nakladatel

Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz

Místo

Zittau

ISBN

3-9808089-0-4

Kniha

Proceedings of the 9th Fuzzy Colloquium

Počet stran

7

BIBTEX


@inproceedings{BUT6617,
  author="Miloš {Šeda},
  title="Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths",
  booktitle="Proceedings of the 9th Fuzzy Colloquium",
  year="2001",
  month="September",
  publisher="Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz",
  address="Zittau",
  isbn="3-9808089-0-4"
}