Detail publikace
Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths
ŠEDA, M.
Anglický název
Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
en
Originální abstrakt
In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.
Anglický abstrakt
In this paper, we deal with the shortest path problem (SPP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. Since fuzzy min operation based on the extension principle leads to nondominated solutions, we propose another approach to solving the SPP using Cheng's centroid point fuzzy ranking method. The described algorithm is a fuzzy generalization of Dijkstra's algorithm for the deterministic case.
Klíčová slova anglicky
single shortest path problem, fuzzy ranking, binary heap, priority queue
Rok RIV
2001
Vydáno
01.09.2001
Nakladatel
Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz
Místo
Zittau
ISBN
3-9808089-0-4
Kniha
Proceedings of the 9th Fuzzy Colloquium
Počet stran
7
BIBTEX
@inproceedings{BUT6617,
author="Miloš {Šeda},
title="Solving the Shortest Path Problem on a Graph with Fuzzy Edge Lengths",
booktitle="Proceedings of the 9th Fuzzy Colloquium",
year="2001",
month="September",
publisher="Institut für Processtechnik, Processautomatisierung und Messtechnik Zittau/Görlitz",
address="Zittau",
isbn="3-9808089-0-4"
}