Detail publikace
The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions
ŽENÍŠEK, A.
Český název
The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions
Anglický název
The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions
Typ
článek v časopise - ostatní, Jost
Jazyk
en
Originální abstrakt
We present a detailed proof of the density of the set C^{\infty}\overline{\Omega}V in the space of test function V\inH^1(\Omega) that vanish on some part of the boundary \diff\Omega of a bounded domain \Omega
Český abstrakt
We present a detailed proof of the density of the set C^{\infty}\overline{\Omega}V in the space of test function V\inH^1(\Omega) that vanish on some part of the boundary \diff\Omega of a bounded domain \Omega
Anglický abstrakt
We present a detailed proof of the density of the set C^{\infty}\overline{\Omega}V in the space of test function V\inH^1(\Omega) that vanish on some part of the boundary \diff\Omega of a bounded domain \Omega
Klíčová slova anglicky
density theorems, finite element method
Rok RIV
2006
Vydáno
01.01.2006
ISSN
0862-7940
Časopis
APPLICATIONS OF MATHEMATICS
Ročník
51
Číslo
5
Počet stran
31
BIBTEX
@article{BUT45248,
author="Alexander {Ženíšek},
title="The Density of Infinitely Differentiable Functions in Sobolev Spaces with Mixed Boundary Cinditions",
journal="APPLICATIONS OF MATHEMATICS",
year="2006",
volume="51",
number="5",
month="January",
issn="0862-7940"
}