Detail publikace
Finite volume evolution Galerkin methods for Euler equations of gas dynamics
LUKÁČOVÁ, M. MORTON, K. WARNECKE, G.
Anglický název
Finite volume evolution Galerkin methods for Euler equations of gas dynamics
Typ
článek v časopise - ostatní, Jost
Jazyk
en
Originální abstrakt
The aim of this paper is a derivation of a new multidimensional high-resolution finite volume evolution Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional Riemann problems in directions normal to cell interfaces the finite volume evolution Galerkin schemes are based on a genuinely multidimensional approach.
Anglický abstrakt
The aim of this paper is a derivation of a new multidimensional high-resolution finite volume evolution Galerkin method for system of the Euler equations of gas dynamics. Instead of solving one-dimensional Riemann problems in directions normal to cell interfaces the finite volume evolution Galerkin schemes are based on a genuinely multidimensional approach.
Klíčová slova anglicky
hyperbolic systems of conservation laws, Euler equations, genuinely multidimensional schemes, evolution Galerkin methods
Rok RIV
2002
Vydáno
01.09.2002
ISSN
0271-2091
Časopis
International Journal for Numerical Methods in Fluids
Ročník
2002
Číslo
40
Počet stran
20
BIBTEX
@article{BUT40974,
author="Mária {Lukáčová} and K.W. {Morton} and Gerald {Warnecke},
title="Finite volume evolution Galerkin methods for Euler equations of gas dynamics",
journal="International Journal for Numerical Methods in Fluids",
year="2002",
volume="2002",
number="40",
month="September",
issn="0271-2091"
}