Detail publikace
Předpověď týdenní spotřeby elektrické energie s využitím fuzzy neuronové sítě.
KHAN, M. ŽÁK, L. ONDRŮŠEK, Č.
Český název
Předpověď týdenní spotřeby elektrické energie s využitím fuzzy neuronové sítě.
Anglický název
FORECASTING WEEKLY ELECTRIC LOAD USING A HYBRID FUZZY-NEURAL NETWORK APPROACH
Typ
článek v časopise - ostatní, Jost
Jazyk
en
Originální abstrakt
A hybrid approach utilizing a fuzzy system and artificial neural network (ANN) for short-term load forecasting of the Czech Electric Power Company (ČEZ) is proposed in this paper. Expert knowledge represented by fuzzy rules is used for preprocessing input data fed to a neural network. For training the neural network for one-week ahead load forecasting, fuzzy ‘If-Then’ rules are used, in addition to historical load and temperature data that are usually employed in conventional supervised training algorithms. The fuzzy-neural network is trained on real data for the years 1994 through 1998 and evaluated on the data for the year 1999 for forecasting next-week load profiles. A very good prediction performance is attained as shown in the simulation results, which verify the effectiveness and superiority of the modeling technique.
Český abstrakt
Článek popisuje využití fuzzy neronové sítě pro předpověď spotřeby elektrické energie na další období.
Anglický abstrakt
A hybrid approach utilizing a fuzzy system and artificial neural network (ANN) for short-term load forecasting of the Czech Electric Power Company (ČEZ) is proposed in this paper. Expert knowledge represented by fuzzy rules is used for preprocessing input data fed to a neural network. For training the neural network for one-week ahead load forecasting, fuzzy ‘If-Then’ rules are used, in addition to historical load and temperature data that are usually employed in conventional supervised training algorithms. The fuzzy-neural network is trained on real data for the years 1994 through 1998 and evaluated on the data for the year 1999 for forecasting next-week load profiles. A very good prediction performance is attained as shown in the simulation results, which verify the effectiveness and superiority of the modeling technique.
Klíčová slova anglicky
One-week ahead load forecasting, Multilayer neural networks and Hybrid fuzzy-neural networks (FNN)
Rok RIV
2004
Vydáno
26.11.2001
ISSN
1210-2717
Časopis
Inženýrská mechanika - Engineering Mechanics
Ročník
2001
Číslo
8
Počet stran
55
BIBTEX
@article{BUT40535,
author="Muhammad R {Khan} and Libor {Žák} and Čestmír {Ondrůšek},
title="FORECASTING WEEKLY ELECTRIC LOAD USING A HYBRID FUZZY-NEURAL NETWORK APPROACH",
journal="Inženýrská mechanika - Engineering Mechanics",
year="2001",
volume="2001",
number="8",
month="November",
issn="1210-2717"
}