Detail publikace

Numerical Investigation of a Rotor System with Disc-Housing Impact

ZAPOMĚL, J. MALENOVSKÝ, E.

Anglický název

Numerical Investigation of a Rotor System with Disc-Housing Impact

Typ

článek v časopise - ostatní, Jost

Jazyk

en

Originální abstrakt

This paper presents a computer modelling investigation of the dynamic behaviour of rotors supported by hydrodynamic bearings. The rotor is discretized into finite elements. The fluid-film bearings are represented by nonlinear forces that are linearized in the neighbourhood of the static equilibrium position. Particular emphasis is given to the modelling of impacts between rotor discs and their casings, for which two approaches are used, namely (i) Newton‘s impact theory and (ii) direct determination of contact forces using a contact stiffness. In the first approach, the discs are assumed to be connected to the shaft by spring elements. The discs and the stationary part are considered to be absolutely rigid. Velocity components of the discs after the impact are calculated using the law of conservation of the momentum and moment of momentum. Dissipation of mechanical energy during impact is taken into account through the coefficient of restitution. In the second approach local flexibility and damping in the contact area are assumed. Local deformation produces impact forces and moments acting on the shaft at the disc location. In both cases, Coulomb friction is assumed to act in the contact area. A modified form of the Newmark method was applied to solve the resulting nonlinear equations of motion. Both approaches make it possible to characterize the steady-state forced vibration behaviour ( periodic, quasi-periodic, chaotic). In addition, the second approach provides further information on the likely magnitude and time history of the impact forces, duration of impacts, etc. The two approaches are illustrated by examples involving imbalance excitation and kinematic excitation of the baseplate

Anglický abstrakt

This paper presents a computer modelling investigation of the dynamic behaviour of rotors supported by hydrodynamic bearings. The rotor is discretized into finite elements. The fluid-film bearings are represented by nonlinear forces that are linearized in the neighbourhood of the static equilibrium position. Particular emphasis is given to the modelling of impacts between rotor discs and their casings, for which two approaches are used, namely (i) Newton‘s impact theory and (ii) direct determination of contact forces using a contact stiffness. In the first approach, the discs are assumed to be connected to the shaft by spring elements. The discs and the stationary part are considered to be absolutely rigid. Velocity components of the discs after the impact are calculated using the law of conservation of the momentum and moment of momentum. Dissipation of mechanical energy during impact is taken into account through the coefficient of restitution. In the second approach local flexibility and damping in the contact area are assumed. Local deformation produces impact forces and moments acting on the shaft at the disc location. In both cases, Coulomb friction is assumed to act in the contact area. A modified form of the Newmark method was applied to solve the resulting nonlinear equations of motion. Both approaches make it possible to characterize the steady-state forced vibration behaviour ( periodic, quasi-periodic, chaotic). In addition, the second approach provides further information on the likely magnitude and time history of the impact forces, duration of impacts, etc. The two approaches are illustrated by examples involving imbalance excitation and kinematic excitation of the baseplate

Klíčová slova anglicky

rotor dynamic systems, computational modelling, disc-housing impact

Vydáno

01.01.2001

Časopis

Journal of Sound and Vibration

Ročník

243

Číslo

2

Počet stran

35

BIBTEX


@article{BUT39642,
  author="Jaroslav {Zapoměl} and Eduard {Malenovský},
  title="Numerical Investigation of a Rotor System with Disc-Housing Impact",
  journal="Journal of Sound and Vibration",
  year="2001",
  volume="243",
  number="2",
  month="January"
}