Detail publikace

Optimalizace energetického zdorje využívajícího uhlí a biomasu pomoci metod stochastického programování

TOUŠ, M. POPELA, P. PAVLAS, M. STEHLÍK, P. DRÁPELA, T.

Český název

Optimalizace energetického zdorje využívajícího uhlí a biomasu pomoci metod stochastického programování

Anglický název

A stochastic programming approach to optimization of combustion plant utilizing coal and biomass

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

Fossil fuels still dominate in current energy production plants. However increasing interest in renewable fuels is observable. The optimization approach introduced in this paper supports sustainable biomass-based fuels integration into the existing energy system. The plant involved in the case study produces approximately 3400 TJ of heat and 460 GWh of electricity per annum. It secures delivery of heat to residential areas, public institutions and industrial enterprises. First, the conditions for effective biomass utilization are identified using mid-term operation planning (one year, time step of one month) procedure (optimum amount of fuels burned in every boiler with maximum profit with respect to export limitation). Then sensitivity analysis of parameters such as fuel prices, energy prices and government subsidies for renewable energy production is performed in order to find conditions appropriate for biomass utilization. The plant model was built and validated using real operation data which enhances its practical application. A limited resource of various types of biomass over a year represents typical inventory type constraints and makes the problem multi-period. Some of the equalities representing transformation functions (e.g. input-output model of boiler and turbine) and inequalities representing limitations (e.g. biomass availability, boiler capacity) in the model are nonlinear and therefore it is non-linear programming problem (NLP). Even though a phenomenon of increased biomass utilization for energy production is discussed world-wide, effective biomass integration using advanced optimization techniques is rarely solved. The model introduced in this paper is implemented in GAMS (General Algebraic Modeling System). It is high-level modeling system, which provides an environment for mathematical programming and optimization. Excel interface was developed to provide user-friendly and comfortable use of GAMS.

Český abstrakt

Fosilní paliva jako uhlí, stále dominují v současných energetických zdrojích. Avšak kvůli emisím CO2, zvišujícím se cenám a nejisté dostupnosti fosilních paliv se zvyšuje zájem o obnovitelné a alternativní zdroje enrgie. Optimalizační postup uvedený v tomto článku podporuje udržitelnou integraci biomasových paliv ve velkých energetických zdrojích. Optimální výběr technologie pro efektivní využiutí biomasy a/nebo alternativních paliv ve energetickém zdroji podléha ekonomickým požadavkům a je silně ovlivněn environmentálními aspekty. Ačkoliv je energetické využití biomasy celosvětově diskutováno, efektivní integrace biomasy pomocí pokorčilých optimalizačních technik jsou řešeny zřídka. Cílem tohoto článku bylo tudíž vytvořit stochastický model, který umožňuje optimalizovat rozhodnutí o využití různých paliv s ohledem na různá časová období a neurčitou budoucnost s ohledem na uvažovanou technologii.

Anglický abstrakt

Fossil fuels still dominate in current energy production plants. However increasing interest in renewable fuels is observable. The optimization approach introduced in this paper supports sustainable biomass-based fuels integration into the existing energy system. The plant involved in the case study produces approximately 3400 TJ of heat and 460 GWh of electricity per annum. It secures delivery of heat to residential areas, public institutions and industrial enterprises. First, the conditions for effective biomass utilization are identified using mid-term operation planning (one year, time step of one month) procedure (optimum amount of fuels burned in every boiler with maximum profit with respect to export limitation). Then sensitivity analysis of parameters such as fuel prices, energy prices and government subsidies for renewable energy production is performed in order to find conditions appropriate for biomass utilization. The plant model was built and validated using real operation data which enhances its practical application. A limited resource of various types of biomass over a year represents typical inventory type constraints and makes the problem multi-period. Some of the equalities representing transformation functions (e.g. input-output model of boiler and turbine) and inequalities representing limitations (e.g. biomass availability, boiler capacity) in the model are nonlinear and therefore it is non-linear programming problem (NLP). Even though a phenomenon of increased biomass utilization for energy production is discussed world-wide, effective biomass integration using advanced optimization techniques is rarely solved. The model introduced in this paper is implemented in GAMS (General Algebraic Modeling System). It is high-level modeling system, which provides an environment for mathematical programming and optimization. Excel interface was developed to provide user-friendly and comfortable use of GAMS.

Klíčová slova česky

Optimalizace, modelování, stochastické programování, spluspalování biomasy, energetický zdroj

Klíčová slova anglicky

Optimization, modelling, stochastic programming, biomass co-firing, combustion plant

Rok RIV

2010

Vydáno

23.06.2010

Nakladatel

Brno University of technology

Místo

Brno

ISBN

978-80-214-4120-0

Kniha

MENDEL 2010

Strany od–do

584–589

Počet stran

6

BIBTEX


@inproceedings{BUT35088,
  author="Michal {Touš} and Pavel {Popela} and Martin {Pavlas} and Petr {Stehlík} and Tomáš {Drápela},
  title="A stochastic programming approach to optimization of combustion plant utilizing coal and biomass",
  booktitle="MENDEL 2010",
  year="2010",
  month="June",
  pages="584--589",
  publisher="Brno University of technology",
  address="Brno",
  isbn="978-80-214-4120-0"
}