Detail publikace

Optimalizace technologie kontinuálního lití ocelové bramy pomocí numerického modelu

ŠTĚTINA, J. KAVIČKA, F. SEKANINA, B. DOBROVSKÁ, J.

Český název

Optimalizace technologie kontinuálního lití ocelové bramy pomocí numerického modelu

Anglický název

Optimization of a Concasting Technology of a Steel Slab via Numerical Models

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

The optimization of production on casters, with the aim of achieving maximum savings and maximum quality of the product is unthinkable without knowledge of the course of solidification and cooling of the slab. It is a global problem of 3D transient heat and mass transfer. If heat conduction within the heat transfer in this system is decisive, the process is described by the Fourier-Kirchhoff equation. It describes the temperature field of the solidifying slab in all three of its states (in the melt, in the mushy zone and in solid state). In order to solve these it is convenient to use the explicit numerical method of finite differences. Numerical simulation of the release of latent heats of phase or structural changes is carried out by introducing the enthalpy function dependent on temperature. The heat transfer coefficients are a function of the local cooling rate and surface temperature. Based on the results of previous investigations, the boundary conditions are set identically within each zone individually. The original 3D model had first been designed as an off-line version and later as an on-line version so that it could work in real time.

Český abstrakt

Optimalizace výroby na licím stroji s cílem dosáhnout maximálních úspor a maximální kvalitu výrobku je nemyslitelná bez znalosti průběhu tuhnutí a chladnutí bramy. Jedná se o nestacionární úlohu přenostu tepla a hmoty. Pro řešení problému je použita explicitní numerická metoda konečných diferencí. Součinitel přenosu tepla je funkcí místní intenzity chlazení a teploty povrchu. Okrajové podmínky jsou stanoveny individuálně pro každou zonu chlazení. Je vyvinut originální 3D of-line model a později on-line model, který umožňuje řešení v reálném čase.

Anglický abstrakt

The optimization of production on casters, with the aim of achieving maximum savings and maximum quality of the product is unthinkable without knowledge of the course of solidification and cooling of the slab. It is a global problem of 3D transient heat and mass transfer. If heat conduction within the heat transfer in this system is decisive, the process is described by the Fourier-Kirchhoff equation. It describes the temperature field of the solidifying slab in all three of its states (in the melt, in the mushy zone and in solid state). In order to solve these it is convenient to use the explicit numerical method of finite differences. Numerical simulation of the release of latent heats of phase or structural changes is carried out by introducing the enthalpy function dependent on temperature. The heat transfer coefficients are a function of the local cooling rate and surface temperature. Based on the results of previous investigations, the boundary conditions are set identically within each zone individually. The original 3D model had first been designed as an off-line version and later as an on-line version so that it could work in real time.

Klíčová slova česky

kontinuální lití, brama, optimalizace, teplotní pole, numerický model

Klíčová slova anglicky

consating, slab, optimization, temperature field, numerical models

Rok RIV

2009

Vydáno

31.05.2009

Nakladatel

Dalhousie university

Místo

Halifax, Canada

ISBN

978-0-9812768-0-9

Kniha

Proceedings 22nd Canadian congress of applied mechanics

Číslo edice

1

Strany od–do

4–5

Počet stran

2

BIBTEX


@inproceedings{BUT29058,
  author="Josef {Štětina} and František {Kavička} and Bohumil {Sekanina} and Jana {Dobrovská},
  title="Optimization of a Concasting Technology of a Steel Slab via Numerical Models",
  booktitle="Proceedings 22nd Canadian congress of applied mechanics",
  year="2009",
  month="May",
  pages="4--5",
  publisher="Dalhousie university",
  address="Halifax, Canada",
  isbn="978-0-9812768-0-9"
}