Detail publikace

Vliv tepelného zpracování na mikrostrukturu, mitrotvrdost a corozní vlastnosti slitiny Mg-3Sn-2Ca

BURŠÍK, J. ZÁBRANSKÝ, K. JIRÁSKOVÁ, Y. ABU LEIL, T. BLAWERT, C. HUANG, Y. KAINER, K. DIETZL, W. HORT, N. RAO, K.

Český název

Vliv tepelného zpracování na mikrostrukturu, mitrotvrdost a corozní vlastnosti slitiny Mg-3Sn-2Ca

Anglický název

Effect of heat-treatment on the microstructure, microhardness and corrosion of cast Mg-3Sn-2Ca alloy

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

Magnesium alloys are among the very good lightweight structural materials with relatively high-strength-to-weight ratio and excellent technological properties. Therefore they attract special attention of electronic, automotive and aircraft industries. On the other hand a drawback of magnesium as a structural material is its high chemical activity leading often to a low corrosion resistance. Since many different mechanically loaded components are subjected to prolonged cyclic stresses in an active environment, it is of significant and practical interest to look for new Mg-based alloys. They should be up to standard of the economical production process and easy workability. Of importance is also surface stability and eventual possibility of modification in terms of the topography and chemistry. One possible solution is to add Ca to Mg-Sn alloys. Sn as an alloying element is cheap, has a low melting point, and is known to improve castability [1, 2]. It forms with magnesium an intermetallic Mg2Sn phase precipitating in Mg-matrix and contributing to strengthening of this alloy [3]. The first published results show a positive effect of Ca in the technological processing of molten magnesium [4], the oxidation and corrosion properties [5-7] and the creep resistance [8]. In this paper the structural and physical properties of the as-cast Mg-3 wt.%Sn-2 wt.%Ca (Mg-3Sn-2Ca) alloy (I) are compared with those obtained for the alloy after solution heating followed by furnace cooling (II), solution heating with following quenching into water (III), and solution heating followed by aging (IV).

Český abstrakt

Hořčíkové slitiny patří do skupiny strukturních materiálů s velmi dobrým poměrem hmotnosti a pevnosti a vynikajícími technologickými vlastnostmi. Proto jsou velmi atraktivní pro elektronický, automobilový a letecký průmysl. Na druhou stranu nevýhoda hořčíku spočívá ve vysoké chemické aktivitě vedoucí často k nízké korozní odolnosti.Od té doby co mnoho různých mechanicky namáhaných komponent je vystaveno cyklickému namáhání v aktivním okolním prostředí je významným a praktickým zájmem najít nové hořčíkové slitiny. Ty by měli zvyšovat standard ekonomického produkčního procesu a měli by být lehce obrobitelné. Důležitá je také stabilita povrchové vrstvy a eventuální možnost modifikace topografie a chemického složení . Jedno možné řešení je přidat Ca do Mg-Sn slitin. Sn jako přídavný materiál je levný, má nízký bod tání a je známo, že zlepšuje slévatelnost. [1, 2]. Ten se formuje s hořčíkem do intermetalické fáze Mg2Sn precipitující v hořčíkové matrici a přispívající ke zpevnění této slitiny [3]. První publikované výsledky ukazují pozitivní vliv Ca na technologický proces tavení hořčíku [4], na oxidační a korozní vlastnosti [5-7] a na krípovou odolnost [8]. V tomto příspěvku jsou struktura a fyzikální vlastnosti Mg-3 wt.%Sn-2 wt.%Ca (Mg-3Sn-2Ca) po odlití (I), porovnány s těmi získanými po ohřevu a následném ochlazení v peci (II), těmi které byly po ohřevu kaleny ve vodě (III) a těmi, které byly po ohřevu vystárnuty (IV)

Anglický abstrakt

Magnesium alloys are among the very good lightweight structural materials with relatively high-strength-to-weight ratio and excellent technological properties. Therefore they attract special attention of electronic, automotive and aircraft industries. On the other hand a drawback of magnesium as a structural material is its high chemical activity leading often to a low corrosion resistance. Since many different mechanically loaded components are subjected to prolonged cyclic stresses in an active environment, it is of significant and practical interest to look for new Mg-based alloys. They should be up to standard of the economical production process and easy workability. Of importance is also surface stability and eventual possibility of modification in terms of the topography and chemistry. One possible solution is to add Ca to Mg-Sn alloys. Sn as an alloying element is cheap, has a low melting point, and is known to improve castability [1, 2]. It forms with magnesium an intermetallic Mg2Sn phase precipitating in Mg-matrix and contributing to strengthening of this alloy [3]. The first published results show a positive effect of Ca in the technological processing of molten magnesium [4], the oxidation and corrosion properties [5-7] and the creep resistance [8]. In this paper the structural and physical properties of the as-cast Mg-3 wt.%Sn-2 wt.%Ca (Mg-3Sn-2Ca) alloy (I) are compared with those obtained for the alloy after solution heating followed by furnace cooling (II), solution heating with following quenching into water (III), and solution heating followed by aging (IV).

Klíčová slova anglicky

Mg-3Sn-2Ca, corrosion properties, microhardness, microstructure

Rok RIV

2006

Vydáno

04.11.2006

Nakladatel

Prof. Dr. K. U. Kainer

Místo

Dresden

ISBN

978-3-527-31764-6

Kniha

Magnesium

Číslo edice

1

Strany od–do

49–54

Počet stran

6

BIBTEX


@inproceedings{BUT22155,
  author="Jiří {Buršík} and Karel {Zábranský} and Yvonna {Jirásková} and Tarek {Abu Leil} and Carsten {Blawert} and Yu {Huang} and K.U. {Kainer} and Wolfgang {Dietzl} and Norbert {Hort} and K.P. {Rao},
  title="Effect of heat-treatment on the microstructure, microhardness and corrosion of cast Mg-3Sn-2Ca alloy",
  booktitle="Magnesium",
  year="2006",
  month="November",
  pages="49--54",
  publisher="Prof. Dr. K. U. Kainer",
  address="Dresden",
  isbn="978-3-527-31764-6"
}