Detail publikace
A digital 3D Jordan-Brouwer separation theorem
ŠLAPAL, J.
Anglický název
A digital 3D Jordan-Brouwer separation theorem
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Anglický abstrakt
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Klíčová slova anglicky
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
Vydáno
25.10.2024
Nakladatel
Ovidius University Constanta
Místo
Constanta
ISSN
1224-1784
Ročník
32
Číslo
3
Strany od–do
161–172
Počet stran
10
BIBTEX
@article{BUT190036,
author="Josef {Šlapal},
title="A digital 3D Jordan-Brouwer separation theorem",
year="2024",
volume="32",
number="3",
month="October",
pages="161--172",
publisher="Ovidius University Constanta",
address="Constanta",
issn="1224-1784"
}