Detail publikace

A digital 3D Jordan-Brouwer separation theorem

ŠLAPAL, J.

Anglický název

A digital 3D Jordan-Brouwer separation theorem

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

Anglický abstrakt

We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky

Klíčová slova anglicky

Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.

Vydáno

25.10.2024

Nakladatel

Ovidius University Constanta

Místo

Constanta

ISSN

1224-1784

Ročník

32

Číslo

3

Strany od–do

161–172

Počet stran

10

BIBTEX


@article{BUT190036,
  author="Josef {Šlapal},
  title="A digital 3D Jordan-Brouwer separation theorem",
  year="2024",
  volume="32",
  number="3",
  month="October",
  pages="161--172",
  publisher="Ovidius University Constanta",
  address="Constanta",
  issn="1224-1784"
}