Detail publikace
Grasping the behavior of magnetorheological fluids in gradient pinch mode via microscopic imaging
KUBÍK, M. ŽÁČEK, J. GOLDASZ, J. NEČAS, D. SEDLAČÍK, M. BLAHUTA, J. BAŃKOSZ, W. SAPINSKI, B.
Anglický název
Grasping the behavior of magnetorheological fluids in gradient pinch mode via microscopic imaging
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
Magnetorheological (MR) fluids are suspensions of micrometer-sized ferromagnetic particles in a carrier fluid, which react to magnetic fields. The fluids can be operated in several fundamental modes. Contrary to the other modes, the rheology and microstructure formation of the MR fluid in the gradient pinch mode have been studied to a far lesser extent. The magnetic field distribution in the flow channel is intentionally made non-uniform. It is hypothesized that the Venturi-like contraction is achieved via fluid property changes, leading to a unique behavior and the presence of a pseudo-orifice. The main goal is to investigate the presence of the Venturi-like contraction effect in the fluid by means of optical imaging and hydraulic measurements. To accomplish the goal, a unique test rig has been developed including a fluorescence microscope and MR valve prototype. The Venturi-like contraction hypothesis was confirmed. The results indicate that the effective flow channel size decreases by 92% at the maximum magnetic flux applied. This has a direct impact on the flow characteristics of the MR valve. The variation of the pressure–flow rate curve slope with magnetic field was demonstrated. The results provide valuable information for understanding the rheology and microstructure formation mechanism in MR fluids in the pinch mode.
Anglický abstrakt
Magnetorheological (MR) fluids are suspensions of micrometer-sized ferromagnetic particles in a carrier fluid, which react to magnetic fields. The fluids can be operated in several fundamental modes. Contrary to the other modes, the rheology and microstructure formation of the MR fluid in the gradient pinch mode have been studied to a far lesser extent. The magnetic field distribution in the flow channel is intentionally made non-uniform. It is hypothesized that the Venturi-like contraction is achieved via fluid property changes, leading to a unique behavior and the presence of a pseudo-orifice. The main goal is to investigate the presence of the Venturi-like contraction effect in the fluid by means of optical imaging and hydraulic measurements. To accomplish the goal, a unique test rig has been developed including a fluorescence microscope and MR valve prototype. The Venturi-like contraction hypothesis was confirmed. The results indicate that the effective flow channel size decreases by 92% at the maximum magnetic flux applied. This has a direct impact on the flow characteristics of the MR valve. The variation of the pressure–flow rate curve slope with magnetic field was demonstrated. The results provide valuable information for understanding the rheology and microstructure formation mechanism in MR fluids in the pinch mode.
Klíčová slova anglicky
magnetorheological fluid
Vydáno
03.04.2024
Nakladatel
AIP Publishing
ISSN
1070-6631
Ročník
36
Číslo
4
Strany od–do
042004-1–042004-10
Počet stran
10
BIBTEX
@article{BUT188368,
author="Michal {Kubík} and Jiří {Žáček} and Janusz {Goldasz} and David {Nečas} and Michal {Sedlačík} and Jiří {Blahuta} and Wojciech {Bańkosz} and Bogdan {Sapinski},
title="Grasping the behavior of magnetorheological fluids in gradient pinch mode via microscopic imaging",
year="2024",
volume="36",
number="4",
month="April",
pages="042004-1--042004-10",
publisher="AIP Publishing",
issn="1070-6631"
}