Detail publikace

Thermodynamic evaluation of mixed refrigerant selection in dual mixed refrigerant NG liquefaction process with respect to 3E's (Energy, Exergy, Economics)

Sarfaraz, Bisma Kazmi, Bilal Taqvi, Syed Ali Ammar Raza, Faizan Rashid, Rushna Siddiqui, Leenah Zehra, Syeda Fatima Bokhari, Awais Klemes, Jiri Jaromir Ouladsmane, Mohamed

Anglický název

Thermodynamic evaluation of mixed refrigerant selection in dual mixed refrigerant NG liquefaction process with respect to 3E's (Energy, Exergy, Economics)

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

The dual mixed-refrigeration process makes it possible to achieve higher liquefaction of natural gas with the advancement in both the refrigeration cycles and refrigerant combinations of components. This is made possible by the fact that the process uses multiple mixed refrigerants. This has a significant impact on the overall improved performance of natural gas liquefaction by having a negative influence on the quantity of energy that is consumed. This study proposes a methodology for selecting the MR components based on their thermodynamic behavior in both warm and cold refrigerant streams. As a result, eighteen alternative scenarios are simulated for this study, each based on (i) fixing the warm loop components or (ii) fixing the cold loop components. The procedure was investigated from the point of view of process engineering, with the 3E model of energy, exergy, and economics serving as the decision-making factor. The findings indicate that increasing the number of components for pre-cooling and subcooling cycles from three to five results in specific energy consumption of 0.49 kW.kgLNG  1 , which seems to be a reduction of 54% in terms of the amount of energy that is consumed in comparison to the process that is based on three components. The irreversibilities of the process were uncovered by doing an exergy analysis. It identified the cases based on five refrigerant components providing reduced exergy destruction of 3505.02 kW with 59% exergy efficiency. The viability of the proposed process is assessed even further through economic analysis. It was observed that five MR-based processes save 22.93% of the total capital cost, 43.56% of the overall operating cost, and 33.61 %of the total annualized cost.

Anglický abstrakt

The dual mixed-refrigeration process makes it possible to achieve higher liquefaction of natural gas with the advancement in both the refrigeration cycles and refrigerant combinations of components. This is made possible by the fact that the process uses multiple mixed refrigerants. This has a significant impact on the overall improved performance of natural gas liquefaction by having a negative influence on the quantity of energy that is consumed. This study proposes a methodology for selecting the MR components based on their thermodynamic behavior in both warm and cold refrigerant streams. As a result, eighteen alternative scenarios are simulated for this study, each based on (i) fixing the warm loop components or (ii) fixing the cold loop components. The procedure was investigated from the point of view of process engineering, with the 3E model of energy, exergy, and economics serving as the decision-making factor. The findings indicate that increasing the number of components for pre-cooling and subcooling cycles from three to five results in specific energy consumption of 0.49 kW.kgLNG  1 , which seems to be a reduction of 54% in terms of the amount of energy that is consumed in comparison to the process that is based on three components. The irreversibilities of the process were uncovered by doing an exergy analysis. It identified the cases based on five refrigerant components providing reduced exergy destruction of 3505.02 kW with 59% exergy efficiency. The viability of the proposed process is assessed even further through economic analysis. It was observed that five MR-based processes save 22.93% of the total capital cost, 43.56% of the overall operating cost, and 33.61 %of the total annualized cost.

Klíčová slova anglicky

3E's analysis (energy; Dual mixed refrigerant; Economics); Exergy; Mixed refrigerant prioritization; Natural gas liquefaction

Vydáno

15.11.2023

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Místo

PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

ISSN

0360-5442

Číslo

283

Počet stran

18

BIBTEX


@article{BUT187638,
  author="Syed Awais Ali Shah {Bokhari} and Jiří {Klemeš},
  title="Thermodynamic evaluation of mixed refrigerant selection in dual mixed refrigerant NG liquefaction process with respect to 3E's (Energy, Exergy, Economics)",
  year="2023",
  number="283",
  month="November",
  publisher="PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND",
  address="PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND",
  issn="0360-5442"
}