Detail publikace

Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor

Xia, Changlei Ren, Tiyao Shabani-Nooshabadi, Mehdi Klemes, Jiri Jaromir Karaman, Ceren Karimi, Fatemeh Wu, Yingji Kamyab, Hesam Vasseghian, Yasser Chelliapan, Shreeshivadasan

Anglický název

Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

CoFe2O4/Graphene Nanoribbons (GNRs) nanocomposite was successfully fabricated and utilised as an electrode active material for high-energy supercapacitor cells. Thanks to the outstanding physicochemical features of a graphene nanoribbon with excellent electrical conductivity and the synergistic effect with cobalt ferrite, as well as the pseudocapacitive effect. The CoFe2O4/GNRs nanohybrid offered an exceptional specific capacitance of 922 F g- 1 (415 C g- 1) at 1.0 A g-1 in 3.0 M KOH electrolyte in a standard 3-electrode set-up. Additionally, the impressive supercapacitive performance metrics showed that the suggested electrode had a distinctive morphology and could be a candidate for capacitive energy storage systems. These metrics included good cycle stability and 87% capacitance retention at the end of the 10,000th CV cycle. Moreover, the asymmetric supercapacitor cell (ASC) was designed by assembling CoFe2O4/GNRs and activated carbon (AC). The resultant ASC provided an improved specific capacitance of 487.85 F g- 1 (683 C g-1) at 1.0 A g-1. At this current density value, the energy density and the power density values were computed as to be 132.8 Wh.kg- 1 and 632.39 W kg- 1. The highest power density was discovered to be 6730.76 W kg- 1 at 10.0 A g-1, whereas the energy density was determined as 8.75 Wh.kg- 1 at this current density. The results of the work proved that CoFe2O4/GNRs nanohybrids are up-and-coming electrode active materials for advanced electrochemical energy storage and conversion technologies.

Anglický abstrakt

CoFe2O4/Graphene Nanoribbons (GNRs) nanocomposite was successfully fabricated and utilised as an electrode active material for high-energy supercapacitor cells. Thanks to the outstanding physicochemical features of a graphene nanoribbon with excellent electrical conductivity and the synergistic effect with cobalt ferrite, as well as the pseudocapacitive effect. The CoFe2O4/GNRs nanohybrid offered an exceptional specific capacitance of 922 F g- 1 (415 C g- 1) at 1.0 A g-1 in 3.0 M KOH electrolyte in a standard 3-electrode set-up. Additionally, the impressive supercapacitive performance metrics showed that the suggested electrode had a distinctive morphology and could be a candidate for capacitive energy storage systems. These metrics included good cycle stability and 87% capacitance retention at the end of the 10,000th CV cycle. Moreover, the asymmetric supercapacitor cell (ASC) was designed by assembling CoFe2O4/GNRs and activated carbon (AC). The resultant ASC provided an improved specific capacitance of 487.85 F g- 1 (683 C g-1) at 1.0 A g-1. At this current density value, the energy density and the power density values were computed as to be 132.8 Wh.kg- 1 and 632.39 W kg- 1. The highest power density was discovered to be 6730.76 W kg- 1 at 10.0 A g-1, whereas the energy density was determined as 8.75 Wh.kg- 1 at this current density. The results of the work proved that CoFe2O4/GNRs nanohybrids are up-and-coming electrode active materials for advanced electrochemical energy storage and conversion technologies.

Klíčová slova anglicky

Asymmetric supercapacitor; CoFe2O4/Graphene nanoribbon; Electrochemical activity; Energy storage systems; High-energy density; Hybrid electrodes

Vydáno

01.05.2023

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Místo

PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

ISSN

0360-5442

Ročník

270

Číslo

1

Počet stran

13

BIBTEX


@article{BUT187460,
  author="Jiří {Klemeš},
  title="Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor",
  year="2023",
  volume="270",
  number="1",
  month="May",
  publisher="PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND",
  address="PERGAMON-ELSEVIER SCIENCE LTDTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND",
  issn="0360-5442"
}