Detail publikace
Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments
MORAVČÍK, I. ZELENÝ, M. DLOUHÝ, A. HADRABA, H. MORAVČÍKOVÁ DE ALMEIDA GOUVEA, L. PAPEŽ, P. FIKAR, O. DLOUHÝ, I. RAABE, D. LI, Z.
Anglický název
Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.5 at % N. Total energy calculations based on density functional theory (DFT) as well as thermodynamic modeling of the Gibbs free energy with the CALPHAD (CALculation of PHAse Diagrams) method reveal a stabilizing effect of N and C interstitials on the FCC lattice with respect to the hexagonal close-packed (HCP) CoCrNi-X (X: N, C) lattice. Scanning transmission electron microscopy (STEM) measurements of the width of dissociated 1/2 dislocations suggest that the SFE of CoCrNi increases from 22 to 42-44 mJ center dot m(-2) after doping the alloy with 0.5 at. % interstitial N. The higher SFE reduces the nucleation rates of twins, leading to an increase in the critical stress required to trigger deformation twinning, an effect which can be used to design load-dependent strain hardening response.
Anglický abstrakt
We investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.5 at % N. Total energy calculations based on density functional theory (DFT) as well as thermodynamic modeling of the Gibbs free energy with the CALPHAD (CALculation of PHAse Diagrams) method reveal a stabilizing effect of N and C interstitials on the FCC lattice with respect to the hexagonal close-packed (HCP) CoCrNi-X (X: N, C) lattice. Scanning transmission electron microscopy (STEM) measurements of the width of dissociated 1/2 dislocations suggest that the SFE of CoCrNi increases from 22 to 42-44 mJ center dot m(-2) after doping the alloy with 0.5 at. % interstitial N. The higher SFE reduces the nucleation rates of twins, leading to an increase in the critical stress required to trigger deformation twinning, an effect which can be used to design load-dependent strain hardening response.
Klíčová slova anglicky
ab initio calculations; interstitials; medium entropy alloy; scanning transmission electron microscopy; stacking fault energy; strengthening
Vydáno
30.08.2022
Nakladatel
Taylor & Francis
Místo
ABINGDON
ISSN
1468-6996
Ročník
23
Číslo
1
Strany od–do
376–392
Počet stran
17
BIBTEX
@article{BUT179129,
author="Igor {Moravčík} and Martin {Zelený} and Antonín {Dlouhý} and Hynek {Hadraba} and Larissa {Moravčíková de Almeida Gouvea} and Pavel {Papež} and Ondřej {Fikar} and Ivo {Dlouhý} and Dierk {Raabe} and Zhiming {Li},
title="Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments",
year="2022",
volume="23",
number="1",
month="August",
pages="376--392",
publisher="Taylor & Francis",
address="ABINGDON",
issn="1468-6996"
}