Detail publikace

On symmetries of a sub-Riemannian structure with growth vector (4,7)

HRDINA, J. NÁVRAT, A. ZALABOVÁ, L.

Anglický název

On symmetries of a sub-Riemannian structure with growth vector (4,7)

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.

Anglický abstrakt

We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.

Klíčová slova anglicky

Nilpotent algebras; Lie symmetry group; Carnot groups; Sub-Riemannian geodesics

Vydáno

17.07.2022

Nakladatel

SPRINGER HEIDELBERG

Místo

HEIDELBERG

ISSN

0003-4622

Ročník

1

Číslo

1

Strany od–do

1–14

Počet stran

14

BIBTEX


@article{BUT178837,
  author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová},
  title="On symmetries of a sub-Riemannian structure with growth vector (4,7)",
  year="2022",
  volume="1",
  number="1",
  month="July",
  pages="1--14",
  publisher="SPRINGER HEIDELBERG",
  address="HEIDELBERG",
  issn="0003-4622"
}