Detail publikace
On symmetries of a sub-Riemannian structure with growth vector (4,7)
HRDINA, J. NÁVRAT, A. ZALABOVÁ, L.
Anglický název
On symmetries of a sub-Riemannian structure with growth vector (4,7)
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.
Anglický abstrakt
We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.
Klíčová slova anglicky
Nilpotent algebras; Lie symmetry group; Carnot groups; Sub-Riemannian geodesics
Vydáno
17.07.2022
Nakladatel
SPRINGER HEIDELBERG
Místo
HEIDELBERG
ISSN
0003-4622
Ročník
1
Číslo
1
Strany od–do
1–14
Počet stran
14
BIBTEX
@article{BUT178837,
author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová},
title="On symmetries of a sub-Riemannian structure with growth vector (4,7)",
year="2022",
volume="1",
number="1",
month="July",
pages="1--14",
publisher="SPRINGER HEIDELBERG",
address="HEIDELBERG",
issn="0003-4622"
}