Detail publikace
Symmetries in geometric control theory using Maple
HRDINA, J. NÁVRAT, A. ZALABOVÁ, L.
Anglický název
Symmetries in geometric control theory using Maple
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
Anglický abstrakt
We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
Klíčová slova anglicky
Geometric control theory; Optimal transport; Sub-Riemannian geometry; Pontryagin's maximum principle; Nilpotent Lie group
Vydáno
01.12.2021
Nakladatel
ELSEVIER
Místo
AMSTERDAM
ISSN
0378-4754
Ročník
190
Číslo
1
Strany od–do
474–493
Počet stran
20
BIBTEX
@article{BUT172472,
author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová},
title="Symmetries in geometric control theory using Maple",
year="2021",
volume="190",
number="1",
month="December",
pages="474--493",
publisher="ELSEVIER",
address="AMSTERDAM",
issn="0378-4754"
}