Detail publikace

Symmetries in geometric control theory using Maple

HRDINA, J. NÁVRAT, A. ZALABOVÁ, L.

Anglický název

Symmetries in geometric control theory using Maple

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Anglický abstrakt

We focus on the role of symmetries in geometric control theory from the Hamiltonian viewpoint. We demonstrate the power of Ian Anderson's package Differential Geometry in CAS software Maple for dealing with control problems on Lie groups. We apply the tools to the problem of vertical rolling disc, however, anyone can modify our approach and tools to other control problems. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Klíčová slova anglicky

Geometric control theory; Optimal transport; Sub-Riemannian geometry; Pontryagin's maximum principle; Nilpotent Lie group

Vydáno

01.12.2021

Nakladatel

ELSEVIER

Místo

AMSTERDAM

ISSN

0378-4754

Ročník

190

Číslo

1

Strany od–do

474–493

Počet stran

20

BIBTEX


@article{BUT172472,
  author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová},
  title="Symmetries in geometric control theory using Maple",
  year="2021",
  volume="190",
  number="1",
  month="December",
  pages="474--493",
  publisher="ELSEVIER",
  address="AMSTERDAM",
  issn="0378-4754"
}