Detail publikace

On positive periodic solutions to second-order differential equations with a sub-linear non-linearity

LOMTATIDZE, A. ŠREMR, J.

Anglický název

On positive periodic solutions to second-order differential equations with a sub-linear non-linearity

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

The paper studies the existence and uniqueness of a positive periodic solution to the equation u′′ = p(t)u − q(t, u), where p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function sub-linear in the second argument. The general results are applied to some particular cases such as the equation u′′ = p(t)u − h(t) sin u with p, h ∈ L([0, ω]). This equation appears when approximating non-linearities in the equation of motion of a certain non-linear oscillator, namely, a pendulum deflected towards the two charged bodies.

Anglický abstrakt

The paper studies the existence and uniqueness of a positive periodic solution to the equation u′′ = p(t)u − q(t, u), where p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function sub-linear in the second argument. The general results are applied to some particular cases such as the equation u′′ = p(t)u − h(t) sin u with p, h ∈ L([0, ω]). This equation appears when approximating non-linearities in the equation of motion of a certain non-linear oscillator, namely, a pendulum deflected towards the two charged bodies.

Klíčová slova anglicky

Periodic solution;second-order differential equation;existence;uniqueness;positive solution

Vydáno

01.02.2021

Nakladatel

Elsevier

Místo

GB - Velká Británie

ISSN

1468-1218

Ročník

2021

Číslo

57

Strany od–do

1–24

Počet stran

24

BIBTEX


@article{BUT165693,
  author="Aleksandre {Lomtatidze} and Jiří {Šremr},
  title="On positive periodic solutions to second-order differential equations with a sub-linear non-linearity",
  year="2021",
  volume="2021",
  number="57",
  month="February",
  pages="1--24",
  publisher="Elsevier",
  address="GB - Velká Británie",
  issn="1468-1218"
}