Detail publikace
Using artificial intelligence to determine the type of rotary machine fault
ZUTH, D. MARADA, T.
Anglický název
Using artificial intelligence to determine the type of rotary machine fault
Typ
článek v časopise ve Scopus, Jsc
Jazyk
en
Originální abstrakt
The article deals with the possibility of using machine learning in vibrodiagnostics to determine the type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab Classification learner app, which creates a model for recognizing faults. The model is ultimately tested on new samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from real measurements in the time domain.
Anglický abstrakt
The article deals with the possibility of using machine learning in vibrodiagnostics to determine the type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab Classification learner app, which creates a model for recognizing faults. The model is ultimately tested on new samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from real measurements in the time domain.
Klíčová slova anglicky
Classification learner, Classification method, Dynamic unbalance, Industry 4.0, Machine learning, Matlab, Neuron network, Static unbalance, Vibrodiagnostics
Vydáno
21.12.2018
Nakladatel
Brno University of Technology
Místo
Brno, Czech Republic
ISSN
1803-3814
Ročník
24
Číslo
2
Strany od–do
49–54
Počet stran
6
BIBTEX
@article{BUT159887,
author="Daniel {Zuth} and Tomáš {Marada},
title="Using artificial intelligence to determine the type of rotary machine fault",
year="2018",
volume="24",
number="2",
month="December",
pages="49--54",
publisher="Brno University of Technology",
address="Brno, Czech Republic",
issn="1803-3814"
}